REDUCING PRONOUN ACCESSIBILITY TO PRESUPPOSITION SATISFACTION

KENY CHATAIN

Institut | Nicod

ENS | PSL

13/03/2023
Introduction

Precursor: Dynamic Semantics
- Primer on dynamic semantics
- The explanatoriness problem
- The under-generation problem

Proposal
- Introduction
- Case studies
 - Case study I: simple conjunction
 - Case study II: reversed conjunction
 - Case study III: acceptable reversed conjunction
 - Case study IV: bathroom sentences
 - Case study V: accessibility via pragmatic inferences
 - Case study VI: cataphora and condition C
- Precedents and inspirations
- Summary

Quantificational cases
- Subordination constraint

Determining f_i

Determining G_i
- A rule for G_i
Introduction
The meaning of certain sentences maps neatly to classical logic.

(1) a. There was a phone-book.
 b. $\exists x, \text{phone-book}(x) \land \text{there}(x)$

(2) a. A dog chased its tail.
 b. $\exists x, \text{dog}(x) \land \text{chased}(\text{tail}(x))(x)$
But pronouns referring to indefinites are more liberal than the variables of classical logic:

(3)

a. There was a phone-book. It was in the cabinet.

b. \((\exists x, \text{phonebook}(x) \land \text{there}(x)) \land \text{cabinet}(x))\)
Accessibility conditions for pronouns

When can a pronoun refer to a given antecedent?
A number of sentences are surprising from the perspective of classical logic:

(4) a. There was a phone-book and it is in the cabinet.
 (cross-conjunction)

 b. If there was a phone-book, it is in the cabinet.
 (donkey conditional)

 c. Either there wasn’t a phone-book or it is in the cabinet.
 (bathroom sentences)

 d. There might be a phone-book. It would be in the cabinet.
 (modal subordination)
But not everything goes:

(5) a. # There wasn’t a phone-book and it is in the cabinet.
 b. # If there was a phone-book, all is good. It is in the cabinet.
 c. # Either there was a phone-book or it is in the cabinet.
 d. # There might be a phone-book. It is in the cabinet.
Old intuition: pronoun accessibility is connected to presupposition satisfaction.
[Heim, 1982, Kamp et al., 2011, among many others]
(6) a. There was **a phone-book** and **it** was in the cabinet.
 b. If there was **a phone-book**, **it** would be in the cabinet.
 c. There might be **a phone-book** ; **it** would be in the cabinet.
(6) a. There was a phone-book and it was in the cabinet.
b. If there was a phone-book, it would be in the cabinet.
c. There might be a phone-book; it would be in the cabinet.

(7) a. # There wasn’t a phone-book and it is in the cabinet.
b. # If there was a phone-book, our quality of life would improve. It is in the cabinet.
c. # Either there is a phone-book or it is in cabinet.

You can only refer to the phone book if the existence of the phone-book can be presupposed when the pronoun is used?
(8) a. There was a phone-book and it was in the cabinet.
 b. There was a phone-book and there still is.
(8) a. There was a phone-book and it was in the cabinet.
 b. There was a phone-book and there still is.

(9) a. If there was a phone-book, it was in the cabinet.
 b. If there was a phone-book, there still is.
(8) a. There was a phone-book and it was in the cabinet.
 b. There was a phone-book and there still is.

(9) a. If there was a phone-book, it was in the cabinet.
 b. If there was a phone-book, there still is.

(10) a. There might have been a phone-book and it would have been in the cabinet.
 b. There might have been a phone-book and there would still be one.
(8) a. There was a phone-book and it was in the cabinet.
 b. There was a phone-book and there still is.

(9) a. If there was a phone-book, it was in the cabinet.
 b. If there was a phone-book, there still is.

(10) a. There might have been a phone-book and it would have been in the cabinet.
 b. There might have been a phone-book and there would still be one.

(11) a. Either there wasn’t a phone-book or it was in the cabinet.
 b. Either there wasn’t a phone-book or there still is.
(12) a. # There wasn’t a phone-book and it is in the cabinet.
b. # There wasn’t a phone-book and there still is.
(12) a. # There wasn’t a phone-book and it is in the cabinet.
 b. # There wasn’t a phone-book and there still is.

(13) a. # There might have been a phone-book and it was in the cabinet.
 b. # There might have been a phone-book and there still is.
(12) a. There wasn’t a phone-book and it is in the cabinet.
 b. There wasn’t a phone-book and there still is.

(13) a. There might have been a phone-book and it was in the cabinet.
 b. There might have been a phone-book and there still is.

(14) a. Either there was a phone-book or it was in the cabinet.
 b. Either there was a phone-book or there still is.
Accessibility Generalization

In a context “…a/some restriction scope …it”, it may co-refer with a NP if and only if the presupposition that there is a NP that VP’s is satisfied.

(Cf also [Mandelkern and Rothschild, 2019])
Accessibility conditions for pronouns

When can a pronoun refer to a given antecedent?

Reduces to:

Presupposition satisfaction for presuppositions

When is a presupposition met?
Upshot of the talk

- Propose a system in which pronouns are interpretable as soon as the existence presupposition is met.
Propose a system in which pronouns are interpretable as soon as the existence presupposition is met.

Although intuitive, this is typically not true in other theories of pronoun accessibility, typically Dynamic Semantics.
Benefits

- The resulting theory covers cases not dealt with by existing theories.
Benefits

- The resulting theory covers cases not dealt with by existing theories.
- It helps address the explanatoriness challenge faced by other approaches.
Benefits

- The resulting theory covers cases not dealt with by existing theories.
- It helps address the explanatoriness challenge faced by other approaches.
- It does not require significantly altering the semantics.
Precursor: Dynamic Semantics
Dynamic Semantics is a unified framework for presuppositions and pronouns. Long and rich tradition, starting forty years ago [Heim, 1982]
Dynamic Semantics is a unified framework for presuppositions and pronouns.
Long and rich tradition, starting forty years ago [Heim, 1982]

Founding assumption of Dynamic Semantics

The meaning of an expression *is* its effect on context.
(15) ✓ A photographer\textsubscript{12} came in and they\textsubscript{12} sat down.
(15) ✓ A Photographer$_{12}$ came in and they$_{12}$ sat down.

(16) a. CP$_1$ and CP$_2$

 b. update the context with [CP_1],
 then update the context with [CP_2]
(15) ✓ A photographer_{12} came in and they_{12} sat down.

(16)
 a. CP_{1} and CP_{2}
 b. update the context with \[[CP_{1}]\],
 then update the context with \[[CP_{2}]\]

(17)
 a. a photographer_{12}
 b. add a photographer at index 12 of the context
(15) ✓ A photographer$_{12}$ came in and they$_{12}$ sat down.

(16) a. CP$_1$ and CP$_2$
 b. *update the context with [CP$_1$],
 then update the context with [CP$_2$]*

(17) a. a photographer$_{12}$
 b. *add a photographer at index 12 of the context*

(18) a. they$_{12}$
 b. *fetch the entity at index 12 from the context*
(19) ✓ Jane **was here** this morning and she’s **still** here.

(20) a. CP₁ and CP₂
 b. *update the context with [CP₁]*,
 then update the context with [CP₂]

(21) a. Jane was here this morning.
 b. *add to the common ground the fact that Jane was here this morning*

(22) a. She’s still here.
 b. *crash if the fact that Jane was here before isn’t part of the common ground*
(23) a. # She_{12} came in and a photographer_{12} sat down.
 b. # She’s still here and Jane was here this morning.

(24) a. CP_{1} and CP_{2}
 b. update the context with \([CP_{1}]\),
 then update the context with \([CP_{2}]\)
Two problems:

1. **The explanatoriness problem**: [Soames, 1989]
 the space of possible dynamic meanings is too rich.

 certain felicitous pronouns are predicted not to be.
(25) a. CP₁ and CP₂
 b. update the context with [CP₁],
 then update the context with [CP₂]
THE EXPLANATORINESS PROBLEM

(25) a. CP₁ and CP₂
 b. update the context with [CP₁],
 then update the context with [CP₂]

(26) a. CP₁ *wand* CP₂
 b. update the context with [CP₂],
 then update the context with [CP₁]
(27) a. They came in *wand* a photographer sat down.
 b. # A photographer came in *wand* they sat down.

In a nutshell: *wand* would only allow cataphora.
(28) a. Jane is **still** here *wand* she **was** here before.
 b. # Jane **was** here before *wand* she’s **still** here.

In a nutshell: *wand* would only allow right-to-left presupposition satisfaction.
Cross-linguistic: is *wand* ever attested? if not, why?

Acquisition: do we see a stage where children have acquired the truth-conditional effect of *and*, but not its “*direction*”? if not, why?
A theoretical desideratum:
A theory with the following architecture would be desirable:

syntax + truth-conditional semantics ⇒ context effects
For the case of presuppositions, alternative theories of presuppositions have met the explanatoriness challenge [Schlenker, 2009, George, 2008, Rothschild, 2011].
For the case of presuppositions, alternative theories of presuppositions have met the explanatoriness challenge [Schlenker, 2009, George, 2008, Rothschild, 2011].

Attempts to extend this to propose a similar theory for pronouns have been made [Elliott, 2020a, Mandelkern, 2020].
Two problems:

1. The explanatoriness problem:
 \textit{the space of possible dynamic meanings is too rich.}

2. The under-generation problem:
 \textit{certain felicitous pronouns are predicted not to be.}
Vanilla Dynamic Semantics [Groenendijk and Stokhof, 1991] does not predict the following sentences to be acceptable:

(29) Predicted #

a. Either there wasn’t a phone-book or it was in the cabinet. (bathroom sentences)

b. It’s not true that there isn’t a phone-book. It’s hidden in the cabinet. (double negation)
Full generalization

In a context “...a/some NP VP ...it”, it may co-refer with a NP if and only if the presupposition that there is a NP that VP’s is satisfied.

(Cf also [Mandelkern and Rothschild, 2019])
(30) Predicted #

a. Either there wasn’t a phone-book or it was in the cabinet.
 (bathroom sentences)

b. It’s not true that there isn’t a phone-book. It’s hidden in the cabinet.
 (double negation)

Dynamic Semantics only validates one direction of the generalization: when it is used, the existence of the phone-book can be presupposed.
Fixes [Elliott, 2020b, Krahmer and Muskens, 1995] exist, typically at two costs:

- ...richer spaces of meaning.
- ...leave other empirical gaps open [Hofmann, 2019].
Fixes [Elliott, 2020b, Krahmer and Muskens, 1995] exist, typically at two costs:

- ...richer spaces of meaning.
- ...leave other empirical gaps open [Hofmann, 2019].

(31) The claim that there is a phone-book in this house is surprising. If this is true, where would one find it?
PROPOSAL
Pronouns carry an existence presupposition.
As soon as the presupposition is met, the pronoun will be interpretable.
Building on any theory of presuppositions satisfaction, including “explanatory” theories
(32) \[[\text{it}_i]^w = f_i(G_i(w))(w) \]

Where D and f are parameters of interpretation:

- for every i and w, $G_i(w)$ is the witness set. (e.g. the set of phone-books)
- for every i, $f_i(w)$ is a choice function: $\forall S, f(S) \in S$ (e.g. the phone-book we want to pick)
There are pragmatic principles constraining f_i and G_i. For now:

Rule for G_i

- For any property P, there is an i such that $G_i(w) = P(w)$
- If there is a constituent “[a NP]$_i$ VP” in the neighboring linguistic context, then it has to be the case that $G_i(w) = \langle \text{NP} \rangle^w \cap \langle \text{VP} \rangle^w$ for all w.

There are pragmatic principles constraining f_i and G_i. For now:

Rule for G_i

- For any property P, there is an i such that $G_i(w) = P(w)$
- If there is a constituent “[a NP]$_i$ VP” in the neighboring linguistic context, then it has to be the case that $G_i(w) = [NP]^w \cap [VP]^w$ for all w.

(33) There was a phone-book$_i$...
\[\leadsto G_i(w) = [phone-book]^w \cap [there]^w \]
Pronoun structure

There are pragmatic principles constraining f_i and G_i. For now:

Rule for G_i

- For any property P, there is an i such that $G_i(w) = P(w)$
- If there is a constituent “[a NP] i VP” in the neighboring linguistic context, then it has to be the case that $G_i(w) = [NP]^w \cap [VP]^w$ for all w.

(33) There was a phone-book i ...

\[
\leadsto G_i(w) = [\text{phone-book}]^w \cap [\text{there}]^w
\]

Provisional rule for f_i

No constraint apart from it being a choice function.
(34) a. There was a phone-book\textsubscript{i} and it\textsubscript{i} was in the cabinet.
 b. $[\text{it}_i] = f_i(G_i(w))(w)$
(34) a. There was a phone-book\textsubscript{i} and \textit{it\textsubscript{i}} was in the cabinet.

b. $\semantics{it\textsubscript{i}} = f_i(G_i(w))(w) \leftarrow$ choice functions can’t apply to empty sets!
Anaphora in conjunction

(34) a. There was a phone-book\(_i\) and it\(_i\) was in the cabinet.

b. \([\text{it}_i] = f_i(G_i(w))(w) \leftarrow G_i(w)\) should not be empty!

c. **Presupposition:** \(G_i(w) = [\text{phone-book}]^w \cap [\text{there}]^w \neq \emptyset\)
Anaphora in conjunction

(35) There is a phone-book and \textit{it} is in the cabinet. \\
 pres: there is a phone-book
(35) There is a phone-book\textsubscript{i} and it\textsubscript{i} is in the cabinet.

\textit{pres}: ∅

\textbf{From theories of presuppositions satisfaction:}
\textit{p} and \textit{pq} does not carry a presupposition.
(35) There is a phone-book$_i$ and it$_i$ is in the cabinet.

pres: \emptyset

\approx There is a phone-book and a certain phone-book that there is is in the cabinet
(36)# **It**$_i$ is in the cabinet and there is a phone-book$_i$.

pres: there is a phone-book

From theories of presupposition satisfaction:
The presupposition of $p’p$ and q is $p’$

[Schlenker, 2009, Fox, 2013, George, 2008].
(36)\# It_i is in the cabinet and there is a phone-book$_i$.

pres: there is a phone-book

From theories of presupposition satisfaction:
The presupposition of $p'p$ and q is p'

[Schlenker, 2009, Fox, 2013, George, 2008].
Cataphora in conjunction

The ban on cataphora is related to the impossibility of right-to-left presupposition satisfaction [Mandelkern et al., 2020].

(37)
 a. There is a phone-book\textsubscript{i} and it\textsubscript{i} is in the cabinet.
 b. There was a phone-book and there still is a phone-book.

(38)
 a. # It\textsubscript{i} is in the cabinet and there is a phone-book\textsubscript{i}.
 b. # There still is a phone-book and there was a phone-book.
But there are exceptions to the ban on right-to-left presupposition satisfaction:

(39) Jane’s no longer in Norway but she was there at some point.
But there are exceptions to the ban on right-to-left presupposition satisfaction:

(39) Jane’s no longer in Norway but she was there at some point.

NB: but is not wand

(40) Jane was in Norway at some point but she’s no longer there.
But there are exceptions to the ban on right-to-left presupposition satisfaction:

(39) Jane’s no longer in Norway but she was there at some point.

Such configurations also license cataphora:

(40) She isn’t in Norway now but one of my students studied there.
(41) Either there wasn’t a phone-book\text{_}_i
or \text{it_}_i was in the cabinet.

pres.: there was a phone-book
(41) Either there wasn’t a phone-book, or it was in the cabinet.

pres.: there was a phone-book

From theories of presupposition satisfaction:

either p or not p does not carry a presupposition.
These cases raise no particular issues in this theory.
(42) Bill believes that I don’t have a sister.
\[\sim I \text{ have a sister.}\]

Maximize Presupposition: [Heim, 1991, Chemla, 2008]
When speaker is likely well-informed about \(p\), “Bill believes \(p\)” conveys \(p\) is false.
A presupposition can be satisfied by such a pragmatic inference:

(43) Bill believes that I don’t have a sister\textsubscript{i}. Yet, he’s met my sister\textsubscript{i} several times.
So can pronouns:

\((44)\) Bill believes I don’t have a sister. Yet, he’s met her several times.
The inference is defeasible; when defeated, the pronoun becomes unavailable:

\[(45)\] Bill believes, and he’s correct, that I don’t have a sister\(_i\).
Yet, he’s met her\(_i\) several times.
The following example looks problematic (A. Anvari, p.c.)

(46) \[\text{They}_i \text{ know that there is someone}_i \text{ in the lobby.} \]
 \[\sim \ # \text{a certain person in the lobby knows that there is someone in the lobby.} \]

- The sentence as a whole presupposes that there is someone in the lobby.
- No reason to assume we can’t accommodate it.
- The sentence should receive the meaning listed.
Point taken! There are more constraints on pronouns than simply an existence presupposition.
Point taken! There are more constraints on pronouns than simply an existence presupposition.

∀ independent need for condition C.
Outside of condition C:

(47)✓ The person that placed \textit{it}_i there knows that there is \textit{a phone-book}_i in the cabinet.
This theory finds parallels in:

1. E-type approaches
2. [Hofmann, 2019]’s ICDRT
E-type theories assume:

- Pronouns are definite descriptions:
 \[it = \text{the phone-book that there was} \].

- Fregean treatment of definite descriptions (existence + uniqueness).

- Accessibility conditions reduced to presupposition satisfaction.

Two long standing issues:

- Formal link: which description is recovered?

(48)

a. Exactly nine of the ten marbles have been found.
 # We’re still looking for it.

b. Exactly one of the ten marbles is missing.
 # We’re still looking for it.
Two long standing issues:

- Formal link: which description is recovered?
- Pronouns can be interpreted even when no uniqueness inferences can be derived.

(48) (Since sage plants are sold in packs of 8,)
Every client who bought a sage plant has bought seven others along with it.
By contrast, in this theory:

- Formal link: there is formal co-indexation.
- No commitment to uniqueness (through choice functions).
- We don’t equate pronouns with definites.
Precedents and inspirations: [Hofmann, 2019]

[Hofmann, 2019]’s ICDRT:

- Indefinites introduce individual concepts in a dynamic system and carry existence presuppositions.
- Pronouns’ accessibility conditions are duplicated: they are dictated by both dynamic meanings and presupposition satisfaction.
Interim summary

- Pronouns’ interpretation contains two parts: the witness set W and a choice function f.
- A general principle specifies the nature of W.
- Pronouns are interpretable iff W is not empty.
- Building on a theory of presupposition satisfaction, predicts:
 - Simple conjunctions.
 - Ban on cataphora.
 - Exceptions to the ban.
 - Bathroom sentences
 - Intrusion of pragmatic inferences in pronoun’s accessibility conditions
QUANTIFICATIONAL CASES
Quantificational cases

(49) Every farmer owns a donkey$_i$. Few of them feed it$_i$ oats.

(50) Every farmer who owns a donkey$_i$ feeds it$_i$ oats.
(49) Every farmer owns a donkey\textsubscript{i}. Few of them feed it\textsubscript{i} oats.

(50) Every farmer who owns a donkey\textsubscript{i} feeds it\textsubscript{i} oats.

Why these cases have garnered a lot of interest:

- co-variation without c-command.
- the speaker has no particular donkey in mind.
Every farmer owns a donkey. Few of them feed it oats.

a. Every farmer owns a donkey.

b. [every farmer] λx. [a donkey] λy. x owns y
(51) Every farmer owns a donkey\textsubscript{i}.
Few of them feed it\textsubscript{i} oats.

a. Every farmer owns a donkey\textsubscript{i}.

b. [every farmer] \(\lambda x. [a \text{ donkey}]_i \lambda y. x \text{ owns } y \)

Rule for \(G_i \)

If there is a constituent “[a NP] \(_i \) VP” in the context, then
\[G_i(w) = [\text{NP}]^w \cap [\text{VP}]^w \] for all \(w \).
(51) Every farmer owns a donkey. Few of them feed it oats.

a. Every farmer owns a donkey.

b. [every farmer] \(\lambda x. [a \text{ donkey}] \lambda y. x \text{ owns } y \)

Rule for \(G_i \)

If there is a constituent “[a NP] VP” in the context, then
\[
G_i(g)(w) = [\text{NP}]^{w,g} \cap [\text{VP}]^{w,g}
\]
for all \(w \).
(51) Every farmer owns a donkey$_i$. Few of them feed it$_i$ oats.

a. Every farmer owns a donkey$_i$.

b. [every farmer] λx. [a donkey]$_i$ λy. x owns y

Rule for G_i

If there is a constituent “[a NP]$_i$ VP” in the context, then

$$G_i(g)(w) = [\text{NP}]^{w,g} \cap [\text{VP}]^{w,g}$$

for all w.

In this case:

$$G_i(g)(w) = \left\{ y \mid \begin{array}{l}
y \text{ is a donkey in } w \\
g(x) \text{ owns } y \text{ in } w
\end{array} \right\}$$
(52) a. Few of them feed \textit{it}_i oats.

 b. Few of them $\lambda x. \, x$ feed \textit{it}_i oats.

 c. $G_i(g)(w) = \left\{ y \mid \begin{array}{l} y \text{ is a donkey in } w \\ g(x) \text{ owns } y \text{ in } w \end{array} \right\}$
(52) a. Few of them feed \textit{it} \textsubscript{i} oats.

b. Few of them \(\lambda x. \ x \text{ feed } \textit{it} \textsubscript{i} \text{ oats} \)
\[\text{pres.: } G_i(g)(w) \neq \emptyset\]

c. \(G_i(g)(w) = \left\{ y \mid \begin{array}{l} y \text{ is a donkey in } w \\ g(x) \text{ owns } y \text{ in } w \end{array} \right\} \)
(52) a. Few of them feed it\textsubscript{i} oats.

b. Few of them $\lambda x. \ x \ \text{feed it}\textsubscript{i} \ \text{oats}$

\hspace{1cm} \text{pres.}: \ g(x) \ \text{owns a donkey in } w

c. $G_i(g)(w) = \left\{ y \ igg| \ y \ \text{is a donkey in } w \quad g(x) \ \text{owns } y \ \text{in } w \right\}$
Universal presupposition projection out of \textit{few}:

(53) \begin{align*}
\text{a. } \text{Few of the farmers } & \text{still have a donkey.} \\
& \leadsto \text{all of them had a donkey} \\
\text{b. } \text{Few of the farmers } & \lambda x. \ x \text{ still have a donkey.} \\
& \text{pres.: } g(x) \text{ had a donkey} \\
\text{c. } \text{Few of the farmers } & \lambda x. \ x \text{ still have a donkey.} \\
& \text{pres.: all farmers had a donkey}
\end{align*}
(54) a. Every farmer owns a donkey and few of them feed it oats.

b. Few of them \(\lambda x. \quad x \text{ feed } it \text{ oats} \)
 \[\text{pres.: } g(x) \text{ owns a donkey in } w \]

c. Few of them \(\lambda x. \quad x \text{ feed } it \text{ oats} \)
 \[\text{pres.: all of them own a donkey in } w \]
The same reasoning applies to the donkey sentence.

(55) a. Every farmer who owns a donkey,
 \[\lambda x. \ x \text{ feeds it oats} \]
 \[
 \text{pres.: } \forall x \ (g_i(x)(w) \neq \emptyset)
 \]

b. \[
\{ y \mid y \text{ is a donkey in } w, \ g(x) \text{ owns } y \in w \}
\]
The same reasoning applies to the donkey sentence.

(55) a. Every farmer who owns a donkey
\[\lambda x. \quad x \text{ feeds } \text{it} \text{ oats} \]
pres.: \(g(x) \) owns a donkey in \(w \)

b. \(G_i(g)(w) = \left\{ y \mid y \text{ is a donkey in } w \quad g(x) \text{ owns } y \text{ in } w \right\} \)
The same reasoning applies to the donkey sentence.

(55)
\begin{align*}
\text{a. Every farmer who owns a donkey:} \quad & \lambda x. \quad x \text{ feeds it oats} \\
& \text{pres.: } g(x) \text{ owns a donkey in } w
\end{align*}

\begin{align*}
\text{b. } G_i(g)(w) &= \left\{ y \vrule \begin{array}{l} y \text{ is a donkey in } w \\ g(x) \text{ owns } y \text{ in } w \end{array} \right\} \\
\text{c. Every farmer who owns a donkey feeds a certain donkey they own oats.}
\end{align*}
Takeaway: the set G_i may depend on the value of certain binders.
(56) Every French tourist visited [a museum they liked]i.
Every English tourist surprisingly avoided iti.

\[W_1(g)(w) = \left\{ y \mid \begin{array}{l} y \text{ is a museum in } w \\ g(x) \text{ liked } y \text{ in } w \end{array} \right\} \]

\[\leadsto \text{accommodating that every English tourist likes some museum should be ok!} \]
What’s next

- **Determining** f_i: what happens when a DP has multiple witnesses?
- **Determining** G_i: what referent does a DP make available?
Determining f_i
(57) \([it_i]^{g,w} = f_i(w)(G_i(g)(w))\)
If there is just one witness, different choice functions will yield the same truth-conditions: \(f(\{p\}) = p \)

(58) There is a phone-book and it is in the cabinet.
What if there are multiple phone-books?

(59) There is a phone-book$_i$ and it$_i$ is in the cabinet.

Empically, is the sentence true if:

- there are two phone-books
- one is in the cabinet, the other isn’t?
What if there are multiple phone-books?

(59) There is a phone-book and it is in the cabinet.

Empically, is the sentence true if:
- there are two phone-books
- one is in the cabinet, the other isn’t?

\(~\sim\) intuitions are not sharp!
A vexed question:

- [Mandelkern, 2020]: “This is a complicated issue, which I won’t explore in detail here.”

- [Elliott, 2020b]: “How to capture existential vs. universal readings is a thorny issue, and [...] therefore we leave a more thorough exploration of donkey anaphora [...] to future work.”

⇝ likewise, my answer will be incomplete!
There is a phone-book and it is in the cabinet.

Three hypothetical readings have been discussed:

- ∀-reading: every phone-book that there is is in the cabinet
- ∃-reading: at least one phone-book is in the cabinet
- uniqueness reading: there is just one phone-book and it’s in the cabinet

Which readings obtain?
Note: although typically discussed for donkey sentences [Kanazawa, 1994], the question is raised in all environments.

(61) a. If there is a phone-book, it is in the cabinet.
 b. Either there isn’t a phone-book or it’s in the cabinet.
 c. Every person that has a phone-book puts it in their cabinet.
The presence of a default reading has been confirmed experimentally many times in donkey sentences. [Foppolo, 2008, Denić and Sudo, 2022, Sun et al., 2020]

(62) a. Some farmer who has a donkey feeds it oats.
\[\sim \exists \text{feeds one of their donkeys oats (}\exists, \text{90\%)}\]

b. Every farmer who has a donkey feeds it oats.
\[\sim \forall \text{feeds all of their donkeys oats (}\forall, \text{60\%)}\]

c. No person who has a donkey feeds it oats.
\[\sim \exists \text{feeds any of their donkeys oats (}\exists, \text{90\%)}\]
But certain lexical items are biased and can override the “default” reading.

(63) a. No person who had an umbrella left it at home today.
\[\neg \leadsto \text{left all of their umbrellas in the cabinet (\forall)} \]

b. Jane has an umbrella and she left it at home.
[Chatain, 2018]
There remain some knowledge gaps:

- What about other environments (*and*, bathroom sentences)?
- What about intuitions of uniqueness?
- Are these truly readings?
There remain some knowledge gaps:

- What about other environments (*and*, bathroom sentences)?
- What about intuitions of uniqueness?
- Are these truly readings?

~ joint work with Benjamin Spector and Nina Gregorio
Generalizing to the worst case, we try to derive all possible readings, not accounting for “default readings”.

Choice of f

A sentence S containing pronouns is:
- definitely true if true for all choices of f
- definitely false if false for all choices of f
- undetermined otherwise
Generalizing to the worst case, we try to derive all possible readings, not accounting for “default readings”.

Choice of f

A sentence S containing pronouns is:

- definitely true if true for all choices of f
- definitely false if false for all choices of f
- undetermined otherwise

Depending on the question under discussion and other pragmatic factors, undetermined may resolve to true or may resolve to false [Kriz, 2015, Champollion et al., 2017].
(64) Every farmer who has a donkey feeds it oats. where $G_i(g)(w) =$ the set of donkeys owned by $g(x)$ in w

a. **Definitely true:**
 for all f,
 every farmer who has a donkey feeds $f(\text{donkey of } g(x))$ oats

b. **Definitely false:**
 for no f,
 every farmer who has a donkey feeds $f(\text{donkey of } g(x))$ oats
This determines the following truth-/falsity-conditions.

(65) Every farmer who has a donkey$_i$ feeds it$_i$ oats.
 a. ...feeds all of them oats (true, \forall)
 b. ...feeds some but not all of them oats (undetermined)
 c. ...feeds none of them oats (false, $\neg\exists$)
Depending on the pragmatics, the reading can oscillate between \(\exists \) and \(\forall \).
Positive: we predict \exists and \forall readings for all sentence types.
Positive: we predict \exists and \forall readings for all sentence types.

Negative: we don’t predict or expect there to be default readings, nor their preponderance.
Determining G_i
Rule for G_i

If there is a constituent “[a NP]$_i$ VP” in the context, then

$$G_i(g)(w) = [\text{NP}]^{w,g} \cap [\text{VP}]^{w,g} \text{ for all } w.$$

How does a language know what a NP is?

\rightsquigarrow *this can’t be a general syntactic/semantic principle.*
There must be a general recipe for determining whether and what (quantifier) DPs can antecede pronouns:

(66)

a. **Some donkey** brayed and then **it** ran away.

b. **Every donkey** brayed and then **they** ran away.
(67) a. **Some donkey** brayed and then **it** ran away.
 b. **Every donkey** brayed and then **they** ran away.

Intuition
A quantified statement allows one to refer to the smallest individual which served to make the statement true.

Adjacent ideas: *minimal situations*
Kratzer, 2002, Elbourne, 2005, *exact truth-makers* [Fine, 2017], …
Intuition

A quantified statement allows one to refer to the smallest individual which served to make the statement true.

(68) a. Some donkey brayed.
 b. Some donkey brayed and is a part of X.

(69) a. **Witnesses:** any X containing some braying donkeys
 b. **Smallest witnesses:** x where x is a braying donkey
Intuition

A quantified statement allows one to refer to the smallest individual which served to make the statement true.

(70) a. Every donkey brayed.
 b. Every donkey brayed and is a part of X.

(71) a. **Witnesses:** any X containing all the braying donkeys
 b. **Smallest witness-∅:** the plurality of braying donkeys
With some amendments and simplifications [Szabolcsi, 2012]:

Witness set

X is a witness for $Q(A)(B)$, if $Q(A)(B \cap \{x \mid x \prec X\})$ and $X \subset A \cap B$.
With some amendments and simplifications [Szabolcsi, 2012]:

Witness set

| X is a witness for Q(A)(B), if Q(A)(B ∩ {x | x ≺ X}) and X ⊂ A ∩ B. |

Determining G_i

| If there is a constituent “[D NP]_i VP” in the context, then G_i must be the set of smallest witnesses of [D] ([NP])([VP]) |
Interim summary

- What referents a quantifier makes available can be systematically derived from its truth-conditions.
- Specifically, a quantified statement allows one to refer to the individuals which bear witness to its truth.
CONCLUSION
Summary

- With the proposed theory, pronoun accessibility fully reduce to presupposition satisfaction.

Predictions:
- Bathroom sentences.
- Donkey, modal subordination.
- Availability and unavailability of cataphora.
- Intrusion of pragmatic inferences in pronoun accessibility.
Summary

- With the proposed theory, pronoun accessibility fully reduce to presupposition satisfaction.
- No need for enrichment; the semantics is kept mostly intact.
Summary

- With the proposed theory, pronoun accessibility fully reduce to presupposition satisfaction.
- No need for enrichment; the semantics is kept mostly intact.
- **Predictions:**
 - Bathroom sentences.
 - Donkey, modal subordination.
 - Availability and unavailability of cataphora.
 - Intrusion of pragmatic inferences in pronoun accessibility.
THANK YOU!

E-type anaphora as NP-deletion.

Situations and Individuals, volume 90.
Mit Press Cambridge, MA.

Towards a principled logic of anaphora.

Towards a principled logic of anaphora.

Pronouns, quantifiers, and relative clauses (I).

A theory of truthmaker content I: Conjunction, disjunction and negation.
THE PUZZLE OF DONKEY ANAPHORA RESOLUTION.

PRESUPPOSITION PROJECTION FROM QUANTIFICATIONAL SENTENCES: TRIVALENCE, LOCAL ACCOMMODATION, AND PRESUPPOSITION STRENGTHENING.

REFERENCE AND GENERALITY.
Cornell University Press.

PREDICTING PRESUPPOSITION PROJECTION: SOME ALTERNATIVES IN THE STRONG KLEENE TRADITION.
Manuscript, UCLA.

Mandelkern, M., Zehr, J., Romoli, J., and Schwarz, F. (2020). We’ve discovered that projection across conjunction is asymmetric (and it is!). Linguistics and Philosophy, 43:473–514.

Schlenker, P. (2009).
Local contexts.
Semantics and pragmatics, 2:1–3.

Soames, S. (1989).
Semantics and Semantic Competence.
Philosophical Perspectives, 3:575–596.

Sun, C., Rothschild, D., and Breheny, R. (2020).
Exploring the existential/universal ambiguity in singular donkey sentences.
In *Proceedings of Sinn Und Bedeutung*, volume 24, pages 289–305. PKP.

Szabolcsi, A. (2012).
Ways of Scope Taking, volume 65.