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Abstract 

Prediction during language processing has been extensively studied over the past decades, with a 

growing body of research focusing on the mechanisms involved in prediction, their properties, and their 

behavioral and neural manifestation. The current work focuses on a suggested distinction between two 

qualitatively different lexical prediction processes: “Pre-activation”, i.e. activation of lexical/semantic 

knowledge stored in long-term memory, and “pre-updating”, i.e. updating of the sentence’s 

representation built in working memory (WM) to include the predicted content.  

In this work I develop and test a model of the joint workings of pre-activation and pre-updating 

within the routine processing stages of a word in sentence context. According to this model, multiple 

lexical predictions are simultaneously pre-activated in a graded manner. Pre-updating is only initiated if 

a certain prediction is highly activated. Namely, if the activation level of a certain prediction passes a 

retrieval threshold, pre-updating occurs, and the highly activated word is integrated into the sentence 

representation already when the prediction is generated, rather than when the word appears in the input. 

If a pre-updated prediction is disconfirmed, prediction failure costs will be incurred (attributed to the 

need to inhibit the falsely predicted word). Importantly, the threshold for pre-updating is variable; it can 

differ between individuals (due to factors such as WM abilities), and be adjusted to different situations 

(due to factors such as predictive validity, noise levels in the input, and task demands), thus controlling 

the tendency to perform pre-updating in order to balance the benefits of successful predictions and the 

costs of unsuccessful predictions. 

This work is composed of three published papers, reporting a series of behavioral and event-

related potentials (ERP) experiments aimed to provide support for the main aspects of the view outlined 

above. In the first paper, we provide electrophysiological evidence for pre-updating, manifested as an 

increased P600 amplitude in high (relative to low) constraint sentences, on a verb prior to the highly 

probable word. We interpret this effect to indicate integration of the highly probable prediction prior to 

its realization in the input. We additionally show that this P600 effect is positively correlated with 

participants’ reading span scores, suggesting that the tendency to pre-update varies between individuals 

depending on WM abilities.  

In the second paper we examine production onsets in a speeded cloze task (i.e. a sentence 

completion task in which participants are instructed to produce a completion out loud as quickly as 

possible). We show that production onsets of the modal response to a sentence (i.e. the most probable 

completion) are influenced by the strength (cloze probability) and relatedness of a not-produced 

competitor, the second most probable completion. These results support the idea that multiple 

predictions are simultaneously pre-activated, and show that the activation level of a predicted word is 

influenced by the alternative predictions. We additionally provide a computational model to account for 

production onsets in the speeded cloze task, by adapting and extending Chen and Mirman’s (2012) 

interactive activation and competition (IAC) model.  

In the third paper we explore the circumstances under which pre-updating occurs, by employing 

a speeded cloze task while measuring ERPs on a verb prior to the cloze response production. This allows 

us to analyze the ERPs based on the specific response produced by the participant in each trial, reflecting 
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the participant’s strongest prediction in that moment. We replicated the increased P600 amplitude in high 

(relative to low) constraint sentences at the verb leading to the highly probable prediction. Importantly, 

this pre-updating P600 effect was observed in high constraint sentences (relative to low constraint) even 

when the participant’s strongest prediction in that moment (their produced response) was a low cloze 

word. These results support a noisy activation race towards a threshold as the mechanism for initiation 

of pre-updating. 

Taken together, these results advance our understanding of the specific mechanisms that 

underlie prediction during language processing, highlighting the notion that prediction is not one 

uniform process, and promoting a more nuanced view of prediction. 
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1 Introduction 

Prediction of upcoming input is a core processing strategy in the human brain, shared across many (if not 

all) cognitive domains, including perception, sensory-motor processing, and learning (for reviews see 

Clark, 2015; Hohwy, 2018). The idea that prediction is involved in cognitive processing dates back to the 

19th century (James, 1890). In the broadest sense, predictive processing refers to any processing that 

incorporates information from previous and present input, with inference about future input. In order for 

this to happen, processing has to be driven not exclusively by the (bottom-up) input, but also by higher-

level representations, i.e. accumulated knowledge that can enable the formation of hypotheses about 

likely upcoming input given previous input, based on experience (see e.g. Bubic, von Cramon, & 

Schubotz, 2010, for discussion of various definitions of prediction in cognitive science and neuroscience). 

Over the past decades, numerous studies have suggested an important role for prediction also in 

language processing. These studies indicate that while reading or listening to linguistic stimuli, we do 

not passively wait for the input and process it as it comes, but rather constantly engage in anticipatory 

processing (for reviews see Huettig, 2015; Kuperberg & Jaeger, 2016; Van Petten & Luka, 2012). 

Prediction in language processing can take place at various linguistic levels or domains. For example, 

studies have demonstrated prediction of syntactic structure (e.g. Arai & Keller, 2013; Farmer, 

Christiansen, & Monaghan, 2006; Garnsey et al., 1997; Gibson & Wu, 2013; Hare et al., 2003; Rohde, 

Levy, & Kehler, 2011; Tanenhaus, Spivey-Knowlton, Eberhard, & Sedivy, 1995; Wilson & Garnsey, 

2009), semantic content (Altmann & Kamide, 1999, 2007; Chambers, Tanenhaus, Eberhard, Filip, & 

Carlson, 2002; Federmeier & Kutas, 1999; Kamide, Altmann, & Haywood, 2003; Kuperberg, Paczynski, 

& Ditman, 2011; Matsuki et al., 2011; Metusalem et al., 2012; Paczynski & Kuperberg, 2011, 2012; Xiang 

& Kuperberg, 2015), phonological information (Allopenna, Magnuson, & Tanenhaus, 1998; DeLong et 

al., 2005), and orthographic information (DeLong et al., 2005; Dikker, Rabagliati, Farmer, & Pylkkänen, 

2010). The current work mostly focuses on what is commonly referred to as lexical predictions, i.e. 

prediction of the lexical-semantic content of an upcoming word in a sentence, although some of the ideas 

discussed here may also be relevant for prediction at other levels of representation.  

1.1 Evidence of prediction during language processing 

An early finding in support of lexical prediction during sentence processing is the decreased reading 

times observed for highly predictable words relative to unpredictable words (e.g. Ehrlich & Rayner, 1981; 

Forster, 1981; Schwanenflugel & LaCount, 1988; Schwanenflugel & Shoben, 1985; Stanovich & West, 

1983; Traxler & Foss, 2000). The predictability of a word in a sentence context is commonly 

operationalized using cloze probability values. To obtain these values, participants are given a sentence 

completion questionnaire termed a ‘cloze questionnaire’, in which the beginning of a sentence is 

presented, and are asked to provide the first completion that comes to mind. The cloze probability of a 

word is defined as the percentage of participants who provided it as the sentence’s completion, and this 

value is considered to reflect how predictable the word is, following the sentence context. An additional 

measure that is calculated using the cloze task is ‘sentence constraint’, which is defined as the percentage 

of participants who provided the most common completion for the sentence. This value is considered to 

reflect the extent to which the sentence context encourages a strong prediction. For example, in sentence 
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(I) below, the word ‘popcorn’ has a 75% cloze probability since it is produced by 75% of the participants 

in a cloze task, and the word ‘candy’ has a 10% cloze probability. The sentence constraint for sentence 

context (I) is 75%, since this is the cloze probability of its most probable completion. This sentence is 

thus highly constraining, i.e., it encourages a strong prediction. On the other hand, for sentence (II) there 

is no particularly highly probable completion. The most probable completion for this sentence is ‘book’ 

and its cloze probability is 25%. Therefore, sentence (II) has a low constraint (25%), which reflects the 

fact that the sentence does not encourage a strong prediction.1  

 

I. Before the movie even started, the kids started to eat the ___ 

A. popcorn (75%) 

B. candy (10%) 

II. In the classroom, Amy opened the cabinet to take out the ___ 

A. book (25%) 

B. notebook (10%) 

 

The studies mentioned above (Ehrlich & Rayner, 1981; Forster, 1981; Schwanenflugel & 

LaCount, 1988; Schwanenflugel & Shoben, 1985; Stanovich & West, 1983; Traxler & Foss, 2000) found 

decreased reading times for words with high cloze probability, relative to low cloze probability words. 

This finding can be explained if probable words are predicted in advance, which means that some of their 

processing is done prior to their realization in the input, leading to facilitation once they appear (see 

below for a more specific account of what processes may be carried out predictively).  

An additional classical finding in support of prediction comes from the ‘visual world’ eye-

tracking paradigm. Altmann and Kamide (1999) showed that when listening to sentences such as ‘the boy 

will eat the cake’, in which the verb has a strong selectional restriction (i.e. requires an edible object), 

while looking at a visual array, participants look at the only picture of an edible object in the display (a 

cake) well before the word ‘cake’ appears in the sentence. This pattern contrasts with the pattern observed 

for sentences with a less restrictive verb such as ‘the boy will move the cake’. The early looks to the 

predicted object in the highly constraining contexts indicate anticipation of the upcoming noun (see also 

Boland, 2005; Kamide, Altmann, & Haywood, 2003).  

Finally, a large body of research on prediction in language comes from event-related potential 

(ERP) experiments. The amplitude of the N400 component was shown by dozens of studies to be 

decreased for predictable relative to unpredictable words, indicating decreased processing difficulty (see 

review in Kutas & Federmeier, 2011). In section 1.4.1 below I elaborate further on the N400 component 

and its relevance to prediction. 

 

1.2 Prediction failure costs and specific word prediction 

Importantly, as often noted in the literature, while the findings mentioned above can be attributed to 

prediction of specific words, they are also compatible with the formation of more general expectations 

(e.g. Federmeier & Kutas, 1999; Luke & Christianson, 2016; Van Petten & Luka, 2012). Namely, instead 

 
1 This example was constructed for explanatory purposes, and the presented cloze probabilities are rough 
estimates.   
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of leading to prediction of upcoming words, a context can lead to activation of some semantic features, 

for example, the verb “drink” would lead to activation of semantic features such as “liquid” rather than 

to the prediction of a specific word such as “water”. This process would still result in the effects discussed 

above, since the processing of e.g. “water” will be facilitated due the activation of its feature “liquid” 

(even if the word ‘water’ was not directly predicted).  

Forming specific word predictions was claimed by some authors to be an implausible processing 

strategy, since the more specific a prediction is, the more likely it is to be contradicted by the input. 

Hence, forming specific predictions would have a low ‘pay-off’ (Forster, 1981; Jackendoff, 2002). 

Underlying this ‘low pay-off’ argument is an implicit assumption that the generation of specific 

predictions consumes some resources, or that the disconfirmation of a prediction incurs prediction failure 

costs (or both), making the scenario of having a wrong prediction worst then the scenario of not 

generating a prediction at all (Van Petten & Luka, 2012). Without this assumption, namely if correct 

predictions are beneficial but incorrect predictions incur no costs, the generation of predictions would 

be rational regardless of their likelihood of success. 

Over the years, several researchers have tried to uncover prediction failure costs. As observed 

by Van Petten and Luka (2012), in order to make a case for prediction failure costs, it is not sufficient to 

observe the prevalent finding that the processing of unpredictable words is more demanding than the 

processing of predictable words (discussed above), since this finding can be explained merely by 

applying to facilitation for successful predictions. Thus, prediction failure costs can only be evidenced 

by differences in the processing of words which are unpredictable to the same degree, when a strong 

prediction could have been formed (i.e. in a high constraint context) relative to when no highly probable 

prediction was available in the first place (i.e. in low constraint context). In this case, since the 

comparison is between similarly unpredictable words, there is no facilitation due to predictability, and a 

difference, if observed, can only be attributed to the existence of the falsely predicted word in the high 

constraint context.  

A few studies revealed little to no evidence of such differences, mostly in behavioral measures 

(e.g. Frisson, Harvey, & Staub, 2017; Luke & Christianson, 2016, Van Petten et al., 1999). However, ERP 

studies have produced a robust and well-replicated indication of increased processing demands that are 

observed when participants are presented with an unexpected word in high relative to low constraint 

contexts, reflected as a frontal post-N400 positivity (f-PNP; e.g. Federmeier et al., 2007; Kuperberg, 

Brothers, & Wlotko, 2020). For example, Federmeier and colleagues (2007) compared sentences such as 

“The children went outside to play/look …”, to sentences such as “Joy was too frightened to move/look 

…”, examining the ERPs elicited by ‘look’ in both sentences. In the former sentence, ‘look’ is presented 

in a high constraint context, since the word ‘play’ is highly probable (85% cloze probability). In the latter 

sentence, on the other hand, ‘look’ is presented in a low constraint context, since the most probable word, 

‘moved’, has only 35% cloze probability. Crucially, although the two sentences differ in constraint (85% 

versus 35%), the cloze probability of the word ‘look’ is similar in both (3%). The results showed that 

while the N400 amplitude elicited by ‘look’ did not differ between these sentences, a f-PNP was elicited 

by ‘look’ in high relative to low constraint context. Since ‘look’ is similarly unpredictable in both 

sentences, this result cannot be attributed to the unpredictability of the presented word. Instead, it is 

attributed to the disconfirmation of a strong prediction in the high constraint context. 

The f-PNP findings thus provide evidence of prediction failure costs, i.e. when confronted with 

an unpredictable word, additional processes need to be recruited in order to overcome a disconfirmed 
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prediction, when there was one. More specifically, in Ness and Meltzer-Asscher (2018a, not included in 

this dissertation), we have provided evidence suggesting that when a strong prediction fails, inhibition 

of the disconfirmed prediction is needed in order to enable integration of the actual input, and that this 

inhibition is reflected in the f-PNP component. Using the cross-modal lexical priming (CMLP) paradigm, 

we showed that a highly predictable word is strongly activated prior to its anticipated appearance, but is 

then inhibited if a (congruent) unexpected word appears instead (but see Federmeier & Rommers, 2018, 

for indication that disconfirmed predictions may not be fully inhibited). Moreover, the inhibition 

behaviorally measured in the CMLP task was correlated with the amplitude of the f-PNP component in 

an ERP study with the same materials, in line with the suggestion that the f-PNP reflects this inhibition 

process.  In a similar vein, Kuperberg, Brothers, and Wlotko (2020) have also suggested that the f-PNP 

component reflects suppression of a disconfirmed prediction. However, while in Ness and Meltzer-

Asscher (2018a) we focused on inhibition at the word level, Kuperberg Brothers, and Wlotko (2020) argue 

for suppression at a higher level of representation, i.e. the event or the situation model. 

However, despite these potential costs of prediction failure, evidence suggests that 

comprehenders do form highly specific predictions, at least under certain circumstances. Namely, 

comprehenders predict the exact word that is expected to appear, including its phonological form, 

grammatical features (e.g. gender), etc. (e.g. Delong, Urbach, & Kutas, 2005; Martin et al., 2013; 

Nieuwland et al., 2018; Nicenboim, Vasishth, & Rösler, 2020; Szewczyk & Wodniecka, 2020; van 

Berkum et al., 2005; Wicha, Moreno, & Kutas, 2004). For example, Wicha and colleagues (2004) 

examined ERPs elicited when Spanish native speakers read a determiner (el/la, un/una, las/los), which 

appears prior to the noun and has to agree with the noun’s grammatical gender. Their results show that 

in sentences that lead to a highly probable noun, determiners with a gender feature that does not match 

the predictable noun elicit enhanced positivity. These results indicate that the predictions generated were 

beyond the conceptual level, such that a specific noun was predicted, including its grammatical features. 

Another study tested ERP responses to words that are form-related (e.g. book-hook) or semantically 

related (e.g. book-page) to the most predictable word in moderately and highly constraining sentences 

(Ito, Corley, Pickering, Martin, & Nieuwland, 2016). When the sentences were presented at a rate of 

500ms per word, a reduced N400 (relative to unrelated words) was found only for semantically related 

words, not for form-related ones. A longer SOA (700ms), however, led to a reduced N400 for form-related 

words as well, but only in highly constraining sentences. These results indicate that predictions of word 

form, although perhaps requiring more time than semantic predictions and depending on the sentence’s 

constraint, do occur. 

1.3 Pre-activation and pre-updating 

In recent years, a distinction was suggested to exist between two qualitatively distinct prediction 

processes, pre-activation and pre-updating (Lau, Holcomb, & Kuperberg, 2013; Kuperberg & Jaeger, 

2016), as explained below. I suggest that this distinction can potentially explain how prediction can be a 

beneficial processing strategy, despite the apparent contradiction between the formation of highly 

specific predictions (which would have a high probability of failure), and the existence of prediction 

failure costs (which would make the generation of specific predictions a costly strategy). 
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“Pre-activation” refers to an increase in the activation level of knowledge stored in long-term 

memory, i.e. the concept’s representation in the lexicon, due to spreading activation as well as more 

controlled prediction processes. Multiple words can be simultaneously pre-activated. The findings 

discussed above, demonstrating decreased processing demands for predictable words, are commonly 

attributed to pre-activation, i.e., the processing of a predictable word is facilitated since the word is 

already activated to some extent, prior to its bottom-up activation (e.g. Federmeier, 2007; Federmeier & 

Kutas, 1999; Kuperberg & Jaeger, 2016). 

In contrast, the term “pre-updating” is used to refer to the updating of the sentence’s 

representation built in working memory (WM), to include the predicted content. This process was 

initially posited by Lau Holcomb, and Kuperberg (2013), based on the finding that the N400 effect on 

target words preceded by prime words was affected by predictive validity (manipulated by changing the 

proportion of related word pairs in the experimental context). Specifically, their results showed that the 

reduction in N400 amplitude for related prime-target pairs was greater in an experimental block in which 

the proportion of related pairs was high, thus encouraging prediction, relative to a block with a lower 

proportion of related pairs (making prediction less beneficial). The authors suggested that these results 

indicate pre-updating, under the assumption that high predictive validity leads to the pre-updating of 

WM representations, and the updated WM representations in turn affect activations, leading to a greater 

reduction in N400 amplitude for related pairs. However, there is no reason to assume that top-down 

control cannot directly enhance or limit the spread of activations, without the mediation of WM 

representations (see e.g. Van Berkum, 2009). Therefore, these results do not provide direct evidence of 

pre-updating. In this work, my first goal was thus to provide evidence of pre-updating, by more directly 

looking at integration processes rather than activations (Ness & Meltzer-Asscher, 2018b, below). 

A key difference between pre-activation and pre-updating is that while the former results in 

priming of multiple words, the latter entails commitment to a specific prediction. Accordingly, I propose 

that only a pre-updated prediction incurs processing costs if disconfirmed. If no commitment is made 

about an upcoming word, then processing difficulty associated with an unexpected word would only 

depend on that word’s activation level (correlated by hypothesis with its cloze probability): less probable 

words need to accumulate more activation in order to be retrieved. However, there would be no 

additional costs related to any alternative prediction that was generated. In contrast, if commitment was 

made, i.e. if a prediction was pre-updated into the sentence representation, then the unexpected word that 

appears in the input cannot be seamlessly processed. Inhibition of the pre-updated prediction is required 

in order to enable integration of another word instead (see further discussion in Ness & Meltzer-Asscher, 

2018a). Thus, unlike when only pre-activation has taken place, the disconfirmation of a pre-updated 

prediction does incur additional processing costs.    

The proposed view of pre-activation and pre-updating is summarized in Figure 1. I view pre-

activation as an “unavoidable” or “automatic” process that occurs whenever linguistic input is processed. 

However, only when activation of some predicted content reaches a certain threshold, this content is 

updated into the sentence representation. In many cases, the threshold is reached only with the aid of 

bottom-up input, namely when the predicted word is encountered in the sentence. However, the retrieval 

threshold can also be reached prior to the realization of the word in the input, when the sentence being 

processed is highly constraining (i.e. leading to a stronger prediction).  
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Figure 1. An outline of prediction processes within the processing stages of a word. 

 

I additionally propose that the retrieval threshold which initiates pre-updating can potentially 

vary between individuals, such that for a similar prediction strength, different comprehenders would be 

more or less likely to pre-update, depending on their individual traits. For example, comprehenders with 

greater WM abilities and better ability to handle prediction failure costs, if these would be incurred, may 

be more inclined to pre-update, namely have a lower retrieval threshold. This suggestion accords with 

proposals of individual differences in threshold-based mechanisms in other cognitive domains, such as 

decision making and response speed-accuracy tradeoff (e.g. Heitz, 2014; Jackson et al., 2016). 

The retrieval threshold may also vary between different situations, depending on factors such as 

task demands, predictive validity and noise levels, which influence how beneficial it is to engage in 

strong prediction in a given situation. For example, in a situation where predictive validity is low (i.e. 

when strong predictions are often violated, namely, there is a high proportion of high constraint contexts 

that end with an unexpected word), it may not be beneficial to commit to a specific prediction even in 

high constraint contexts, and therefore the threshold for pre-updating may be raised. Several studies have 

shown that predictions can be adapted to different situations (e.g. Brothers et al., 2019; Brothers, Swaab, 

& Traxler, 2017; Hutchison 2007; Lau, Holcomb, & Kuperberg, 2013; Neely, 1977; Schwanenflugel & 

Shoben, 1985). However, the manipulations in these studies did not specifically target pre-updating or 

prediction failure costs. In a recent study (Ness & Meltzer-Asscher 2021c, not included in this 

dissertation), we have shown that prediction failure costs decrease when the participant estimates that 

the predictive validity in the experimental context is low. These results provide initial indication that 

comprehenders may alleviate prediction failure costs when prediction validity is low by raising the 

threshold for pre-updating, thus avoiding pre-updating and preventing the need to perform inhibition 

when the prediction is disconfirmed. 

Thus, in situations where it is not likely to be beneficial to form a specific prediction and commit 

to it, due to a high probability of failure (e.g. in a low constraint context, and/or when predictive validity 

is low), prediction will only manifest in graded pre-activation, and will not incur failure costs (even if the 

most probable word does not appear). Only when committing to a specific prediction has a high 

probability of success (e.g. in a high constraint context, when predictive validity is not low), such 
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commitment is engaged in, i.e. pre-updating occurs. In these scenarios, the benefits of successful 

prediction are more frequent than the costs of failure. 

I also propose that the distinction between pre-activation and pre-updating can provide an 

explanation for why prediction failure costs where not always observed in the literature (e.g. Frisson, 

Harvey, & Staub, 2017; Luke & Christianson, 2016; , Van Petten et al., 1999). First, under the current 

view, prediction failure costs are not gradual throughout the entire scale of sentence constraint; they only 

occur at the higher end of the scale. For example, consider an unpredictable word with e.g. 5% cloze 

probability, appearing in a moderately constraining sentence with e.g. 50% sentence constraint, 

compared to a similarly low cloze probability word (5%) appearing in a highly constraining sentence with 

e.g. 85% sentence constraint. In both cases there is some prediction error, but this does not entail that 

prediction failure costs will be proportional to the magnitude of the prediction error in each sentence. 

Instead, if pre-updating only occurs for very strong predictions (e.g. predictions with cloze probability 

above 70%), then in sentences with 50% constraint there would be no prediction failure costs at all. This 

may hinder detection of prediction failure costs in analyses designed to test for correlation between 

prediction error (or an equivalent measure) and prediction failure costs, throughout the entire range of 

constraint, i.e. including sentences with moderately and even low constraint (e.g. Luke & Christianson, 

2016).  Moreover, the occurrence of prediction failure costs depends on the tendency to pre-update, which 

may vary substantially depending on the specific details of each experiment (e.g. predictive validity, task 

demands). Specifically, this may contribute to the lack of evidence for prediction failure costs in 

experiments employing eye-tracking while reading (Frisson, Harvey, & Staub, 2017; Luke & 

Christianson, 2016). In such experiments, sentences are presented in their entirety and for unlimited time, 

and the participant can control their reading rate as well as regress to previously read material. For this 

reason, participants have no rational incentive to engage in strong prediction. Namely, when the 

participant controls their intake of the input, there may be no reason to ‘run ahead’ and integrate a 

prediction prior to its perception, since it can simply be read at a pace that best corresponds to the 

participant's processing. Notably, this is in contrast to spoken language, in which the auditory input 

rapidly disappears, as well as to visual word-by-word presentation at a fixed rate, which is common in 

psycholinguistic experiments (and specifically in the ERP literature on prediction).  

1.4 ERP correlates of activation and integration 

Studies 1 and 3 reported below use event-related potentials to investigate prediction processes. I thus 

briefly discuss here the most relevant findings from the two ERP components I used – the N400 and the 

P600. For more detailed reviews see Kutas & Federmeier (2011) and Brouwer et al. (2017).   

1.4.1 The N400 

The N400 ERP component is a centro-parietal negativity peaking between 300 and 500 ms after stimulus 

onset. This highly studied component was initially found for semantically incongruent sentence-final 

words (e.g. the word ‘socks’ in the sentence: “he spread the warm bread with socks”) relative to 

congruent ones (Kutas & Hillyard, 1980). However, it was later shown that the N400 is not specifically 

elicited by semantic incongruency. Rather, the component is also manifested in response to congruent 

words, showing a graded amplitude that inversely correlates with the word's cloze probability (Kutas & 
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Hillyard, 1984; Kutas, Lindamood, & Hillyard, 1984, Delong, Urbach & Kutas, 2005; Wlotko & 

Federmeier, 2012). Moreover, the N400 elicited by mid-sentence content words in an unfolding sentence 

becomes progressively smaller as the sentence context becomes increasingly constraining (i.e. leading 

to stronger predictions) (Van Petten & Kutas, 1990, 1991; Van Petten, 1993; Dambacher, Kliegl, Hofmann 

& Jacobs, 2006). Taken together, these findings suggest that the amplitude of the N400 is inversely 

correlated with the activation level of a word, thus reflecting the effort exerted to retrieve the word (see 

e.g. Brouwer et al., 2012, 2017, Delong, Urbach, & Kutas, 2005, Federmeier and Laszlo, 2009; Kutas and 

Federmeier, 2000, 2011). Namely, the more pre-activated a word is, the easier it is to retrieve, and the 

lower the N400 amplitude it elicits. 

Another robust finding is that unpredictable words that are semantically related to the 

predictable word elicit a smaller N400 compared to unrelated words. This pattern was demonstrated both 

for low-cloze congruent words (Thornhill & Van Petten, 2012), and for anomalies (Kutas et al., 1984; 

Kutas & Hillyard, 1984; Federmeier & Kutas, 1999). For example, in a sentence such as “They wanted to 

make the hotel look more like a tropical resort. So along the driveway, they planted rows of 

palms/pines/tulips”, the word ‘pines’, elicits decreased N400 amplitude compared to the word ‘tulips’, 

due to the greater relatedness of the former to the predictable continuation ‘palms’ (Federmeier & Kutas, 

1999). This result can be explained by assuming overlap of pre-activated features (e.g. ‘a tree’) between 

the predicted word and related words (Federmeier & Kutas, 1999), or spreading activations from the 

predicted word to related words, causing the related word to be activated and therefore easier to retrieve, 

thus eliciting a smaller N400 relative to an unrelated word.  

Notably, the N400 was argued by several authors to reflect integration demands, rather than 

retrieval costs (e.g. Brown & Hagoort, 1993; Hagoort et al., 2009). However, as noted by Brouwer and 

colleagues (2012, 2017), this suggestion cannot account for the reduced N400 observed for anomalies 

when they are related to a predictable word (Kutas et al., 1984; Kutas & Hillyard, 1984; Federmeier & 

Kutas, 1999). Since these words create anomalous sentences, their integration should be difficult 

regardless of their relatedness to a predictable word, and they should thus elicit a large N400, contrary to 

fact. In contrast, as explained above, the retrieval view predicts a small N400 for these words, as their 

retrieval is facilitated by the pre-activation of the predicted word, which is related to them.  

Additionally, the suggestion that the N400 indexes integration rather than retrieval costs is also 

challenged by findings showing that sentences which are anomalous due to thematic role reversal of a 

highly probable role assignment, do not elicit increased N400 amplitudes, even though integration should 

be difficult (e.g. Chow & Phillips, 2013; Hoeks, Stowe, & Doedens, 2004; Kim & Osterhout, 2005; 

Kuperberg et al., 2007; Van Herten, Kolk, & Chwilla, 2005). For example, Hoeks and colleagues (2004) 

have shown that in anomalous Dutch sentences such as (III) below, the verb (geworpen, ‘thrown’) does 

not elicit increased N400 amplitude, relative to congruent control sentences such as (IV) (these sentences 

instead elicit increased P600 amplitudes, see discussion of the “semantic P600” below). In these 

sentences, the integration of ‘thrown’ should be more difficult in (III) than in (IV), but this is not reflected 

in the N400. In contrast, retrieval should be similarly easy in both sentences, since ‘thrown’ is highly 

activated by the words ‘javelin’ and ‘athlete’ (regardless of the structure in which they appear), in line 

with the absence of an N400 effect. Note, that the absence of increased N400 in such sentences does not 

rule out the possibility that the N400 reflects both retrieval and integration, to some extent (see Nieuwland 

et al., 2020), but it does suggest that the N400 does not chiefly reflect integration. 
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III. De   speer   heeft de   atleten   geworpen 

the  javelin has    the athletes thrown 

‘The javelin threw the athletes’ 

 

IV. De speer    werd door de   atleten  geworpen 

the javelin was   by     the athletes thrown 

‘The javelin was thrown by the athletes’ 
 
 

1.4.2 The P600 

The P600 ERP component is a positive deflection in the ERP, with a posterior distribution over the scalp, 

usually observed within a time-window of 500-900 ms post stimulus onset. This component was initially 

observed in response to syntactic anomalies such as violation of subcategorization constraints (e.g. 

Osterhout & Holcomb, 1992) and agreement errors (e.g. Hagoort, Brown & Groothusen, 1993), as well as 

in “Garden path” sentences, where an initial structure needs to be reanalyzed (e.g. Osterhout & Holcomb, 

1992, Osterhout, Holcomb, & Swinney, 1994; Hagoort, Brown & Osterhout, 1999). Importantly, however, 

the P600 was also shown to be elicited in grammatical sentences that do not involve reanalysis. One such 

example is the increased P600 amplitude observed when a long-distance dependency is completed (e.g. 

Felser, Clahsen, & Munte, 2003; Fiebach, Schlesewsky & Friederici, 2002; Gouvea, Phillips, Kazanina, 

& Poeppel, 2010; Kaan, Harris, Gibson, & Holcomb, 2000; Phillips, Kazanina, & Abada, 2005). For 

instance, an increased P600 amplitude is measured on the verb “imitated” in a sentence such as (V) 

relative to (VI) (Kaan, Harris, Gibson, & Holcomb, 2000). The difference between these sentences is that 

at the verb in (V), integration of the filler occurs. In contrast, the processing of the verb in (VI) does not 

include this additional process. Thus, there are more integration demands at this point in (V) relative to 

(VI).  

V. Emily wondered who the performer in the concert had imitated __ for the audience’s 

amusement. 

VI. Emily wondered whether the performer in the concert had imitated a pop star for the audience’s 

amusement. 

The P600 was also found in “semantic illusion” contexts, namely in syntactically sound sentences that 

are semantically anomalous due to thematic role reversal or thematic violations as in example III relative 

to IV below (the "Semantic P600", see e.g. Chow & Phillips, 2013; Hoeks, Stowe, & Doedens, 2004; 

Kuperberg et al., 2007). These and other findings have led to the suggestion that the P600 amplitude 

reflects integration difficulty (Brouwer, Fitz, & Hoeks, 2012; Kaan et al., 2000; For further discussion 

regarding the functional nature of the P600, also see Chow & Phillips, 2013). 

1.5 The current studies 

In the current studies (the three published papers included in chapters 2-4 below), I focus on the suggested 

distinction between pre-activation and pre-updating, aiming to establish an understanding of the 
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mechanisms underlying these processes. Here I very briefly outline the research questions and results of 

each study.   

1.5.1 Predictive pre-updating and working memory capacity: Evidence from event-related 

potentials (Ness & Meltzer-Asscher, 2018b) 

In this paper we report an ERP experiment, aimed to provide evidence of pre-updating. As discussed 

above, pre-updating involves integration of a strongly predicted word into the sentence representation, 

prior to the realization of the word in the input. Since the P600 component was suggested to reflect 

integration processes, we hypothesized that pre-updating would be reflected in increased P600 

amplitude, on a word prior to a highly predictable continuation. Thus, we presented participants with 

high and low constraint sentences (presented word-by-word), and examined the ERPs of both the highly 

predictable noun in the high constraint context (relative to low constraint), and the verb prior to this noun, 

where the strong prediction can be generated. As expected, at the noun we observed decreased N400 

amplitude in high relative to low constraint contexts, reflecting facilitation due to the predictability of 

the presented noun in the high constraint context. Crucially, on the preceding verb we observed increased 

P600 in high relative to low constraint contexts, reflecting, according to our interpretation, additional 

integration processes prior to the highly probable word in high relative to low constraint sentences, 

presumably due to integration of the predicted noun. Additionally, we tested the participants’ reading 

span, a measure aimed to reflect WM abilities. The pre-updating P600 effect was correlated with reading 

span, such that individuals with higher reading span demonstrated a larger P600 effect, indicating that 

individuals with better WM abilities have a higher tendency to pre-update. These results provide 

evidence for pre-updating, and for individual differences in the tendency to pre-update. 

1.5.2 Love thy neighbor: facilitation and competition between parallel predictions (Ness & 

Meltzer-Asscher, 2021a) 

This paper focused on the mechanisms of pre-activation. As mentioned above, we assume, with others, 

that multiple predictions are pre-activated in parallel (unlike pre-updating, which is limited to a specific 

prediction). Thus, the study reported in this paper was aimed to explore the interactions between 

simultaneously activated predictions. The study employed a speeded cloze task (i.e. a sentence 

completion task in which participants are instructed to produce a completion out loud as quickly as 

possible), looking at the production onset of cloze responses. We began with an exploratory analysis, 

using pre-existing data, in order to develop a specific hypothesis about how alternative predictions affect 

each other. We then followed up with a replication experiment, for which the analysis (corresponding to 

the specific hypothesis) was pre-registered. The results show that production onsets of the modal 

response to a sentence (i.e. the most probable completion) are influenced by the strength (cloze 

probability) of a not-produced competitor, the second most probable completion. When these two words 

are highly related, the stronger the competitor is, the more it facilitates the production of the modal 

response (i.e. earlier production onset). However, when the two words (the modal and the competitor) are 

relatively unrelated, the stronger the competitor is, the more it delays the production of the modal 

response (i.e. later production onset). These findings demonstrate that multiple predictions are pre-

activated simultaneously, affecting the activation level of each other. We provide an account for this 

pattern within the interactive activation and competition (IAC) framework, by adapting a computational 

model previously employed to account for neighborhood effects on single-word recognition and 
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production (Chen & Mirman, 2012). We additionally extend this model to account for previously 

observed effects in the speeded cloze task (Staub et al., 2015).  

1.5.3 From pre-activation to pre-updating: A threshold mechanism for commitment to 

strong predictions (Ness & Meltzer-Asscher, 2021b) 

Capitalizing on the pre-updating P600 effect we demonstrated in the study discussed above (1.5.1), we 

conducted an ERP study combined with a speeded cloze task, aiming to test the hypothesis that pre-

updating is initiated by an activation threshold mechanism. Participants were presented with high and 

low constraint contexts (presented word by word), followed by a blank line prompting them to produce 

a completion. We used the specific response produced by the participant in each trial, reflecting the 

participant’s strongest prediction in that moment, to analyze the ERPs on a verb prior to the production 

prompt. Increased P600 amplitude was observed in high (relative to low) constraint sentences, and this 

effect was correlated with reading span, replicating our previous results. Importantly, the pre-updating 

P600 effect was observed in high constraint sentences (relative to low constraint) even when the 

participant’s strongest prediction in that moment (their produced response) was a low cloze word. These 

results support a noisy activation race towards a retrieval threshold as the mechanism for initiation of 

pre-updating. 
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2 Papers 

2.1 Predictive pre-updating and working memory capacity: Evidence from event-related 

potentials 

Tal Ness and Aya Meltzer-Asscher (2018b) 

Journal of Cognitive Neuroscience, 30(12), 1916-1938 

 

Abstract 

It was recently proposed that lexical prediction in sentence context encompasses two 

qualitatively distinct prediction mechanisms: “pre-activation”, namely activating 

representations stored in long-term memory, and “pre-updating”, namely updating the 

sentence’s representation, built online in working memory, to include the predicted 

content (Lau, Holcomb, & Kuperberg, 2013). The current study sought to find evidence 

for pre-updating and test the influence of individual differences in working memory 

(WM) capacity on the tendency to engage in this process. Participants read strongly and 

weakly constraining sentences. Event-related potentials were measured on the 

predictable noun as well as on the preceding verb, where the prediction is generated. 

Increased P600 amplitude was observed at the verb in the strongly constraining 

sentences, reflecting integration of the predicted upcoming argument, thus providing 

evidence for pre-updating. This effect was greater for participants with higher WM 

capacity, indicating that the tendency to engage in pre-updating is highly affected by 

WM capacity. The opposite effect was observed at the noun, i.e. for participants with 

higher WM span, a greater decrease in P600 amplitude in the strongly constraining 

sentences was observed, indicating that the integration of a pre-updated word was 

easier. We discuss these results in light of previous literature and propose a plausible 

architecture to account for the interplay between pre-activation and pre-updating, 

mediating the influence of factors such as WM capacity. 

 

1) Introduction 

Over the past couple of decades, studies focusing on prediction processes led to an increasingly strong 

consensus regarding the role of prediction in sentence processing. It is now widely assumed that in the 

course of comprehending a sentence, we do not passively wait for the input and process it as it comes, 

but rather constantly engage in some form of anticipatory processing. A classical finding demonstrating 

this is the decreased reaction times observed for predictable as compared to unpredictable words in a 

sentence (e.g. Ehrlich & Rayner, 1981; Forster, 1981; Schwanenflugel & LaCount, 1988; Schwanenflugel 

& Shoben, 1985; Stanovich & West, 1983; Traxler & Foss, 2000). Similarly, the amplitude of the N400 

event-related potentials (ERP) component elicited by a word has been shown to inversely correlate with 

the word’s cloze probability, meaning that N400 amplitude decreases as the word's predictability 

increases (e.g. Delong, Urbach & Kutas, 2005; Kutas & Hillyard, 1984; Kutas, Lindamood, & Hillyard, 

1984; Wlotko & Federmeier, 2012). Interestingly, the amplitude of the N400 is not decreased only for 

predictable words. Unpredictable words that are semantically related to a predictable word elicit a 
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smaller N400 compared to unrelated words (e.g. Thornhill & Van Petten, 2012), and this is true even for 

anomalous words (e.g. Federmeier & Kutas, 1999; Kutas & Hillyard, 1984; Kutas et al., 1984). These 

findings indicate that the amplitude of the N400 reflects an architecture that involves pre-activation, i.e. 

that a decreased N400 likely reflects easier retrieval of words that were already activated, either due to 

spreading activation from the predicted word to related words or due to activation of shared 

features/concepts. In addition to “spreading” or shared activation, the activation level of a word, 

reflected in its N400 amplitude, is also affected by higher-level prediction processes. This is shown by 

findings of N400 sensitivity to factors that influence top-down control, such as predictive validity (e.g. 

Lau, Holcomb, & Kuperberg, 2013). 

 

1.1) Pre-activation vs. pre-updating 

Although the general notion of prediction is largely accepted in the psycholinguistic literature, the 

precise nature of the processes involved, as well as the extent and ubiquity of prediction during sentence 

processing, are still under ongoing debate. Recently, Lau et al. (2013) suggested a distinction between 

two qualitatively distinct mechanisms of prediction, later referred to as “pre-activation” and “pre-

updating” (Kuperberg & Jaeger, 2016). “Pre-activation” refers to an increase in the activation level of 

knowledge stored in long-term memory, i.e. the concept’s representation in the lexicon, due to spreading 

activation as well as more controlled prediction processes. In contrast, the term “pre-updating” is used 

to refer to the updating of the sentence’s representation built in working memory (WM), to include the 

predicted content. 

Two different accounts were put forward regarding the relation between pre-activation and pre-

updating. While Lau et al. (2013) assume that pre-activation leads to pre-updating, Kuperberg and Jaeger 

(2016) assume the opposite order. To illustrate this, Kuperberg and Jaeger consider the following sentence 

fragment: ‘The day was breezy so the boy went outside to fly a …’. We can hypothesize two possible 

processing scenarios occurring after encountering this fragment. One possibility, adopted by Lau et al. 

(2013), is that the partial representation of the event (<boy flies>) leads to pre-activation of the lower-

level representation of ‘kite’. This pre-activated lexical representation is then pre-updated, i.e. it enters 

WM to be integrated with the sentence’s representation, which in turn affects higher representational 

levels, including updating of the event representation (to be <boy flies kite>). The other possibility, 

adopted by Kuperberg and Jaeger (2016), is that the partial representation of the event (<boy flies>) is first 

pre-updated (to be <boy flies kite>), which then causes pre-activation of the lower-level representation 

of ‘kite’. Distinguishing between these accounts is difficult; although they differ in the assumed order 

in which the different representational levels are updated, they ultimately lead to very similar 

predictions. Here, we adopt the view that pre-activation precedes pre-updating, and that pre-updating 

can then “propagate” to higher representational levels.   

An important difference between pre-activation and pre-updating is that while the former entails 

priming of multiple entities, the latter entails commitment to a specific prediction, which would incur 

processing costs if disconfirmed. If no commitment is made about an upcoming word, then processing 

difficulty associated with an unexpected word should only depend on this word’s activation level 

(correlated by hypothesis with its cloze probability). Indeed, several studies have shown that low-cloze 

words elicit similar N400 amplitudes regardless of whether their preceding context is strongly or weakly 

constraining. Crucially, however, it was also found that low-cloze words that follow strongly as opposed 

to weakly constraining contexts elicit a late anterior positivity, the frontal post-N400-negativity (fPNP). 
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This component was argued to reflect an additional cost of prediction failure, exhibited only when the 

comprehender committed to a specific prediction (e.g. Brothers, Swaab, Traxler, 2015; Federmeier, 

Wlotko, De Ochoa-Dewald, & Kutas, 2007; Ness & Meltzer-Asscher, in press. see Van Petten & Luka, 

2012 for a review).  

Thus, as opposed to pre-activation, which is graded and can occur to different degrees depending 

on prediction strength and specificity, pre-updating is an “all or nothing” mechanism, which compels 

commitment. This conjecture stems from the inherent properties of the architectures of long-term 

memory and working memory, which are vastly different. While an immeasurable number of 

representations is simultaneously stored in long-term memory, the capacity of WM is highly limited (e.g. 

“the magical number seven” suggested by Miller, 1956, or “the magic number four”, Cowan, 2010; 

Green, 2017) and therefore it is unlikely that many competing predictions can simultaneously be pre-

updated.2 Based on the properties of these two different memory systems, we view pre-activation as an 

“unavoidable” process that occurs whenever linguistic input is processed. However, only when 

activation of some predicted content reaches a certain threshold, this content is pre-updated; at this 

threshold the predicted content is, for all intents and purposes, retrieved, and is therefore integrated into 

the sentence’s representation in WM. It should be noted that we do not claim that pre-updating is a 

mechanism designated for prediction per-se. As any sentence is incrementally processed, each word 

undergoes activation, retrieval and integration. The notion of pre-updating, as we see it, merely means 

that retrieval can be achieved even without the need to wait for bottom-up activation, when top-down 

activation is strong enough to reach the retrieval threshold. In this case, the retrieved content will simply 

move on to the following processing stages, i.e. structure building, semantic integration, thematic role 

assignment, etc., similarly to a word that had actually appeared in the input (but see Discussion for 

potential differences). This retrieval threshold will be more likely reached (prior to the realization of the 

word in the input) when the sentence being processed is more constraining (leading to a stronger 

prediction) and when predictive validity is high. The threshold could also potentially vary between 

individuals, such that for similar prediction strength, different comprehenders would be more or less 

likely to pre-update. 

The findings mentioned above, demonstrating priming effects in reaction times and in N400 

amplitudes, can be explained by pre-activation alone, without the need to appeal to an additional process 

of pre-updating. This is also the case for other manifestations of prediction in sentence processing, such 

as anticipatory eye movement in the visual world paradigm (e.g Altmann & Kamide, 1999; Boland, 2005; 

Kamide, Altmann, & Haywood, 2003). As all of these findings reflect activations of stored 

representations, without direct examination of representations built in WM, they can only provide 

evidence for pre-activation. Lau et al. (2013) presented findings which they claimed were more relevant 

to pre-updating. The authors showed that the N400 effect in word pairs was affected by predictive 

validity, manipulated by changing the proportion of related word pairs in the experimental context. 

Greater facilitation, reflected by a reduced N400 amplitude, was observed in the context which contained 

a larger proportion of related words, thereby encouraging prediction. This finding was suggested by the 

authors to indicate pre-updating, under the assumption that high predictive validity leads to pre-updating 

of WM representations, and the updated representation in turn affects activations, leading to a greater 

relatedness effect, i.e. reduced N400. However, there is no reason to assume that top-down control cannot 

 
2 For discussion of a different approach, see Section 4.5. 
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directly enhance or limit the spread of activations, without the mediation of WM representations (see e.g. 

Van Berkum, 2009). Therefore, these results do not provide unambiguous evidence in favor of pre-

updating. It should also be noted that the processing of word pairs may differ substantially from sentence 

processing, with participants adopting prediction strategies specific to the task (e.g. lexical or semantic 

decision to the second word in the pair). 

The goal of the current study was therefore to find more direct support for pre-updating by 

looking for evidence for integration processes prior to the onset of a highly predictable word in a 

sentence, as well as for decreased integration demands when encountering the predicted word. We 

hypothesized that these effects would be reflected in the P600 ERP component, which is a measure for 

integration processes. The P600 component is a positive deflection in the EEG, with a posterior 

distribution over the scalp. This component was initially observed in response to syntactic anomalies 

such as violation of subcategorization constraints (e.g. Osterhout & Holcomb, 1992) and agreement errors 

(e.g. Hagoort, Brown & Groothusen, 1993), as well as in “Garden path” sentences, where an initial 

structure needs to be reanalyzed (e.g. Osterhout & Holcomb, 1992, Osterhout, Holcomb, & Swinney, 

1994; Hagoort, Brown & Osterhout, 1999). Additionally, the P600 was shown to be elicited in grammatical 

sentences that do not involve reanalysis. Importantly, increased P600 amplitude is observed when a long-

distance dependency is completed (e.g. Felser, Clahsen, & Munte, 2003; Fiebach, Schlesewsky & 

Friederici, 2002; Gouvea, Phillips, Kazanina, & Poeppel, 2010; Kaan, Harris, Gibson, & Holcomb, 2000; 

Phillips, Kazanina, & Abada, 2005). For example, an increased P600 amplitude is measured on the verb 

“imitated” in a sentence such as (1a) relative to (1b) (Kaan, Harris, Gibson, & Holcomb, 2000). The 

difference between these sentences is that at the verb in (1a), integration with the filler occurs. In contrast, 

the processing of the verb in (1b) does not include this additional process. Thus, there are more integration 

demands at this point in (1a) relative to (1b).  

 

1. a. Emily wondered who the performer in the concert had imitated __ for the audience’s 

amusement. 

b. Emily wondered whether the performer in the concert had imitated a pop star for the 

audience’s amusement. 

 

The P600 was also found in “semantic illusion” contexts, namely syntactically sound sentences 

that are semantically anomalous due to thematic role reversal or thematic violations (the "Semantic 

P600", see e.g. Chow & Phillips, 2013; Hoeks, Stowe, & Doedens, 2004; Kuperberg et al., 2007). These 

and other findings have led to the suggestion that P600 amplitude reflects integration difficulty (Brouwer, 

Fitz, & Hoeks, 2012; Kaan et al., 2000; For further discussion regarding the functional nature of the P600, 

also see Chow & Phillips, 2013).3 

In the current study we adopt the suggestion that the P600 reflects some form of integration, 

without committing to a specific characterization of the processes reflected by the P600. In our case, it is 

sufficient to assume that any of the processes involved in integrating a word - syntactic structure 

building, dependency formation, thematic role assignment, semantic integration, etc. - affects P600 

amplitude, in order to hypothesize that pre-updating of a predicted word will be reflected by increased 

 
3 The P600, characterized by a posterior scalp distribution, should be distinguished from the fPNP described 

above, indexing the costs of failed prediction.   
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P600 amplitude at the point where pre-updating occurs, followed by decreased P600 amplitude when the 

already pre-updated word is encountered. 

 

1.2) A reanalysis of EEG data 

In order to test the feasibility of finding a measurable P600 difference due to pre-updating, we reanalyzed 

EEG data collected for a previous study (Ness & Meltzer-Asscher, in press). The data were collected from 

24 participants (14 male), native Hebrew speakers, with an average age of 25.7 (range: 19-37). Eighty-four 

experimental sentences were used, with sentence constraints ranging from 53.6% to 100%. For the new 

analysis, we divided the sentences such that half were classified as high-constraint and half as low-

constraint (example sentences are provided in Appendix A). The average constraint in the high-constraint 

sentences was 89.5% (range: 80% - 100%), and the average constraint in the low constraint sentences was 

68% (range: 50% - 80%). The critical word in the sentences was the verb, on which the prediction was 

generated. Verbs in the high-constraint and low-constraint conditions were matched on length (p = .799), 

frequency (p = .898, corpus: Linzen, 2009) and position in the sentence (p = .906, measured in number of 

words). Due to the design of the original experiment, after the critical verb the experimental sentences 

continued with either the predicted word, a congruent but unexpected word, or an anomalous word. 

Sentences were presented word-by-word in the middle of the screen for 200ms, with a 300ms ISI. For a 

more detailed description of the materials, procedure and EEG recording see Ness and Meltzer-Asscher 

(in press).  

Based on the typical time-window and scalp distribution of the P600, mean amplitudes over 500-

800ms from the verb onset for all centro-parietal and parietal electrodes were entered into a repeated-

measures ANOVA with the factors Constraint (High, Low) and Electrode (9 levels: CP5, CP1, CP2, CP6, 

P7, P3, Pz, P4, P8). A main effect of Constraint was found (F (1,22) = 7.05, p = .014), such that verbs in the 

high-constraint sentences yielded a larger P600 amplitude than those in the low-constraint sentences. 

Grand averaged ERPs at a representative electrode and scalp distribution of the P600 component are 

provided in Figure 1. 

 

 

 

High – Low 

constraint 

 

 

 

Figure 1: Grand averaged ERPs and scalp distribution for the reanalysis results 

 

High constraint 

Low constraint 
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These results provide initial evidence for pre-updating, as they indicate that more integration 

processes take place at the verb when it has a highly predictable argument (high-constraint), relative to 

when there is no highly predictable argument (low-constraint). A caveat to these results is that the critical 

word (i.e. the verb), as well as the following words, were not identical between the high- and low-

constraint sentences. Additionally, we could not compare the ERPs to the actual predicted word between 

the high- and low-constraint sentences, to test whether its integration is easier when pre-updating had 

already occurred at the verb. This was due to the fact that in the original design, the predicted word 

appeared in only one third of the trials (which would result in fourteen trials in each condition), and due 

to the fact that the predicted word was presented immediately following the verb and its signal would 

therefore be contaminated by the P600 effect at the verb. 

 

1.3) The current study 

The current study was designed to overcome the limitations of the reanalysis we conducted, as well as 

replicate the result observed on the verb. Moreover, as pre-updating involves representations built online 

in WM, we hypothesized that the extent to which an individual tends to engage in pre-updating depends 

on their WM capacity. 

 In the present experiment, participants read strongly and weakly constraining sentences in 

Hebrew. ERPs were measured on the predictable noun phrase (NP) as well as on the preceding verb. 

These two critical words were separated by an additional word, the Hebrew accusative case marker, in 

order to make sure that the signal on the NP is not contaminated by effects originating at the verb. 

Participants’ WM capacity was assessed via a reading span test. 

If pre-updating indeed occurs, and is more likely to occur when the prediction is stronger, a P600 

effect is predicted on the verb in the strongly constraining sentences, reflecting integration of the 

predicted upcoming argument (the following NP). On the NP, an opposite effect is predicted, namely 

increased P600 in the low-constraint sentences, reflecting the benefits of pre-updating, i.e. easier 

integration of a word that had already been pre-updated. Moreover, if participants with higher reading 

span exhibit a higher tendency to engage in pre-updating, then the effects should be greater for these 

participants.  

 

2) Methods 

2.1) Participants 

Participants were 37 Tel-Aviv University students (18 males), all native Hebrew speakers, with an 

average age of 25.4 (range: 19-40). Participants were given course credit or paid 60 NIS (~$15) for their 

participation. One participant was excluded from the analysis due to excessive artifacts. The 

experimental protocol received approval from the Ethics Committee in Tel Aviv University.  

 

2.2) Materials 

The materials consisted of 52 sentence pairs. Each pair included a high-constraint sentence and a low-

constraint sentence (based on a cloze probability questionnaire, as detailed below). See Table 1 for an 

example set and Appendix B for all materials. The sentences in each pair differed at the beginning but 

were identical from the critical words onwards. The critical words were the verb after which the sentence 

constraint differed between the conditions, and the NP that followed it. In order to avoid contaminating 
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the ERPs measured on the NP by effects stemming at the verb, these words were separated by the word 

‘et’, the Hebrew accusative case marker. This case marker does not bear any agreement features, and it 

was therefore identical in all sentences and could not provide any indication of the upcoming noun. The 

number of words before the verb did not differ between the conditions (p = .890), nor did the length or 

frequency of the word prior to the verb (p = .163 and p = .383, respectively). Materials were divided into 

two lists according to a Latin square such that each participant saw only one sentence from each pair (i.e. 

26 items in each condition, and 52 sentences in total). Presentation order was randomized for each 

participant. 

Table 1: Example set 

Constraint Sentence 

High 

 

Biglal še-ofir   lo   makir et      ha-sifria,    ha-safranit   azra 

since  that-ofir not know ACC the-library, the-librarian helped  

lo    limco    et      ha-sefer   še-hu   haia  carix 

him to-find ACC the-book that-he COP needed 

‘Since Ofir isn’t familiar with the library, the librarian helped him find 

the book he needed’ 

 

Low 

 

ofir xipes       ve-xipes         bemešex šaot,   aval lo   ecliax 

ofir searched and-searched for          hours, but  not succeeded 

limco    et      ha-sefer   še-hu   haia  carix 

to-find ACC the-book that-he COP needed 

‘Ofir had searched for hours, but he couldn’t find the book he needed’ 

Yes/No question: Was Ofir looking for a book? (Yes) 

The critical words (the verb and the NP) are marked in bold. ACC = accusative case, COP = copula. 
 

Cloze probability questionnaires: Two cloze probability questionnaires were conducted. Both included 

sentence fragments, and participants were instructed to complete each sentence with the first completion 

that comes to mind. In the first questionnaire, the sentences were presented truncated after the verb (i.e. 

the presented sentence frame included the verb). This questionnaire included 66 sentence pairs, divided 

into two lists such that each participant saw only one sentence from each pair. The order of presentation 

was randomized for each participant. A hundred and two participants completed this questionnaire 

(average age 25.4, 29 male). Based on this questionnaire, the 52 experimental sets were chosen. The 

average constraint in the high-constraint condition was 72.4% (range: 50% - 100%), meaning that on 

average, 72.4% of completions provided by participants in the questionnaire were ‘et’ (the accusative 

case marker) followed by the most commonly provided noun. The average constraint in the low-

constraint condition was 18.8% (range: 0-50%, again, percentage reflecting ‘et’ + the most commonly 

provided noun). When counting completions of the same lexical item whether it was preceded by the 

accusative case marker or not, the average constraint in the high-constraint condition was 80.5% and the 
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average constraint in the low-constraint condition was 27.3%. Overall, the accusative case mark itself 

(with any noun) was predictable in both conditions (high – 87.0%, low – 74.8%).  

In the second cloze probability questionnaire, the sentences were truncated before the verb. 

Since the verb is a critical word in the experiment (i.e. its ERP is of interest), this questionnaire was aimed 

to make sure that the verb's cloze probability did not differ between conditions, which would lead to an 

N400 effect. The questionnaire included the 52 experimental sets, divided into two lists such that each 

participant saw only one sentence from each pair. The order of presentation was randomized for each 

participant. This questionnaire was also completed by a hundred and two participants, different from the 

ones who completed the first questionnaire (average age 24.3, 25 male). The average cloze probability of 

the verbs was 0.7% and 1.1% in the high- and low-constraint conditions respectively, with no significant 

difference between conditions (p = .595). 

 

2.3) Procedure 

Stimuli were presented using the E-prime 2.0 software (Psychology Software Tools, Pittsburgh, PA). 

Sentences were presented word-by-word in the middle of the screen for 250ms, with a 350ms ISI. A 

comprehension question appeared following 50% of the trials (randomly distributed). Each trial was 

preceded by a 1000ms fixation point. After each trial a string of number signs  (####) appeared on the 

screen and the participant pressed a button to start the next trial. Participants were encouraged to take as 

many breaks as needed. Prior to the experiment, participants completed a practice block of five trials. 

Reading span test: To asses WM capacity, each participant also completed a reading span test.4 The test 

was performed following the main experiment or, for a few participants, in a separate session prior to 

their participation in the main experiment. The test’s procedure is based on Daneman and Carpenter 

(1980), with minor differences. Participants read aloud a series of Hebrew sentences, after which they had 

to recall the last word of each sentence. The number of sentences in the series increased from two to six. 

Participants had three series in each level, and the last level at which a participant correctly recalled all 

words in at least two series was defined as this participant’s reading span (i.e., when the participant failed 

to recall a word in two series in the same level the test was terminated and the participant’s reading span 

was defined at the prior level). Two practice series (at the two-sentence level) were performed prior to 

the test, in which participants could make mistakes and ask questions.  

 

2.4) EEG recording and pre-processing 

The electroencephalogram (EEG) was recorded using a BrainVision actiCap system with 32 Ag/AgCl 

scalp electrodes attached according to the 10-20 system. Two electrodes were used to monitor EOG, 

located at the outer canthi and the infraorbital ridge of the right and left eyes respectively. Electrode 

impedances were kept below 5 kΩ for all scalp electrodes and below 15Ω for the EOG electrodes. During 

recording, the EEG was referenced to Fp2 for most participants (the online reference electrode for five 

participants was Fp1, for technical reasons). The EEG was then re-referenced offline (for all participants) 

to the average of the left and right mastoid electrodes. Data were collected at a 250 Hz sampling rate and 

 
4 Reading span is a limited measure of WM capacity, as it can also be affected by differences in language 

proficiency. Participants in the current study were likely rather homogenous in their language proficiency since 

they were all mono-lingual Hebrew-speaking university students, which would allow reading span scores to reflect 

WM capacity relatively well. However, future studies can disentangle WM capacity from language proficiency, 

possibly by using a factor analytic approach (e.g. Kim, Oines, and Miyake, 2017). 
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low-pass filtered at 70 Hz. Data were then bandpass-filtered between 0.1 and 30 Hz, and segmented into 

1200 ms epochs, including -200 to 1000 ms relative to the onset of the critical word. The 200 ms prior to 

the onset of the critical word were used for baseline correction. Trials contaminated by blinks, eye 

movements, excessive muscle activity or amplifier blocking were rejected off-line before averaging and 

excluded from further analysis (this affected 5.36% of the trials). 

 

2.5) EEG data analysis 

Based on the typical time windows of the N400 and the P600, mean amplitudes over 300-500ms and 500-

800ms (respectively) were analyzed. Electrodes were grouped based on their anteriority and laterality 

(Anterior - Left: F7, F3, Fp1, FC5, FC7, T1, C3; Middle: Fz, Cz; Right: F8, F4, Fp2, FC2, FC6, T7, C4; 

Posterior - Left: P7, P3, O1, CP5, CP1; Middle: Pz, Oz; Right: P8, P4, O2, CP2, CP6) in order to reduce 

the number of comparisons and the familywise error rate (see Luck, 2014) while still allowing to assess 

the topography of the effects. Standardized reading span scores were entered to the analyses as a 

continuous covariate. This resulted in repeated-measures ANCOVAs with the factors Anteriority 

(Anterior, Posterior), Laterality (Left, Middle, Right), and Constraint (High, Low), and the covariate 

Span. These analyses were conducted on time windows relative to both the verb onset and the noun onset, 

and were followed by separate analyses for anterior and posterior sites (with the factors Laterality and 

Constraint, and the covariate Span). The Huyhn-Feldt adjustment for nonsphericity of variance was 

applied when the sphericity assumption was violated. In these cases, the corrected p-value is reported 

with the original degrees of freedom. 

 

3) Results 

3.1) Accuracy 

Accuracy for the comprehension questions was significantly above chance for all participants. Mean 

accuracy rate was 93.37% (SD: 4.83). Accuracy data were subjected to a repeated-measures ANCOVA 

with the factor Constraint (High, Low) and the covariate Span. No significant main effects or interactions 

were found. 

 

3.2) EEG 

Grand averaged ERPs and scalp distributions of the components are displayed in Figures 2-4. The results 

of the different ANCOVAs are provided in Table 2.  

Verb 

N400: Mean amplitudes over the 300-500ms time window (relative to the verb onset) were entered into a 

repeated-measures ANCOVA with the factors Anteriority (Anterior, Posterior), Laterality (Left, Middle, 

Right), and Constraint (High, Low), and the covariate Span, followed by separate ANCOVAs for anterior 

and posterior sites. No main effects or interactions were found. 

P600: Mean amplitudes over the 500-800ms time window (relative to the verb onset) were entered into a 

repeated-measures ANCOVA with the factors Anteriority (Anterior, Posterior), Laterality (Left, Middle, 

Right), and Constraint (High, Low), and the covariate Span. A significant interaction was found between 

Anteriority and Constraint (F(1,34) = 4.312, p =.045), as well as between Anteriority, Constraint and Span 

(F(1,34) = 6.267, p =.017). To further explore these interactions, separate ANCOVAs were performed on 

posterior and anterior sites. In the ANCOVA conducted over posterior electrodes, a significant effect of 

Constraint was found (F(1,34) = 11.935, p =.001) such that P600 amplitude was higher in the high-
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constraint condition. Additionally, a significant interaction was found between Constraint and Span 

(F(1,34) = 5.698, p =.023), such that the P600 effect was grater for participants with a higher span. The 

relation between reading span and the P600 effect at the verb is plotted in Figure 5. These effects were 

not found in the ANCOVA conducted over anterior electrodes.  

Noun 

N400: Mean amplitudes over the 300-500ms time window (relative to the noun onset) were entered into 

a repeated-measures ANCOVA with the factors Anteriority (Anterior, Posterior), Laterality (Left, 

Middle, Right), and Constraint (High, Low), and the covariate Span. A significant interaction was found 

between Anteriority and Constraint (F(1,34) = 15.024, p < .001) but not between Anteriority, Constraint 

and Span. To follow-up on the two-way interaction, separate ANCOVAs were run on posterior and 

anterior sites. In the ANCOVA conducted over posterior electrodes, a significant effect of Constraint 

was found (F(1,34) = 19.057, p < .001), such that N400 amplitude was higher in the low-constraint 

condition. There was no interaction between Constraint and Span. Neither of these effects was found in 

the ANCOVA conducted over anterior electrodes. 

P600: Mean amplitudes over the 500-800ms time window (relative to the noun onset) were entered into a 

repeated-measures ANCOVA with the factors Anteriority (Anterior, Posterior), Laterality (Left, Middle, 

Right), and Constraint (High, Low), and the covariate Span. There was no significant interaction between 

Anteriority and Constraint, but we did observe a trend towards a three-way interaction between 

Anteriority, Constraint and Span (F(1,34) = 2.883, p = .099). Although this interaction did not reach 

significance, we further explored this pattern by conducting separate ANCOVAs over posterior and 

anterior sites, since our a-priory hypothesis was about posterior effects (the P600 component). In the 

ANCOVA conducted over posterior electrodes, no significant effect of Constraint was found, but there 

was a significant interaction between Constraint and Span (F(1,34) = 4.422, p = .043), such that for 

participants with higher reading span, there was a greater decrease in P600 amplitude in the high- (relative 

to low-) constraint sentences. This effect was not found in the ANCOVA conducted over anterior 

electrodes. There was also a significant three-way interaction between Laterality, Constraint and Span 

(F(2,68) = 5.57, p = .011), suggesting that the observed P600 was left-lateralized. 

 

To summarize the results, at the verb, a significant effect of Constraint as well as an interaction between 

Constraint and Span were found in posterior electrodes in the 500-800ms time window, meaning that 

high-constraint sentences elicited an increased P600 amplitude (relative to low-constraint ones), and that 

this increase was greater for participants with higher WM capacity. 

At the noun, a significant effect of Constraint was found in posterior electrodes in the 300-500ms 

time window, with high-constraint sentences eliciting a decreased N400 amplitude (relative to low-

constraint ones). This N400 effect was not affected by WM capacity. Additionally, an interaction between 

Constraint and Span was found in posterior electrodes in the 500-800ms time window on the noun, 

meaning that for participants with higher reading span, there was a greater decrease in P600 amplitude 

in the high- (relative to low-) constraint sentences.   
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Figure 2: Grand averaged ERPs and scalp distributions for all participants. Grand averaged ERPs 
and scalp distributions of the N400 (300-500ms) and P600 (500-800ms) of the verb and noun for all 
participants. 
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Figure 3: Grand averaged ERPs and scalp distributions for the high-span group. Grand averaged 
ERPs and scalp distributions of the N400 (300-500ms) and P600 (500-800ms) of the verb and noun for high 
span participants, with a reading span of 4 or higher (M = 4.33). 
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Figure 4: Grand averaged ERPs and scalp distributions for the low-span group. Grand averaged 
ERPs and scalp distributions of the N400 (300-500ms) and P600 (500-800ms) of the verb and noun for low 
span participants, with a reading span of 3 or lower (M = 2.61).   
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High constraint 
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Figure 5: Size of P600 effect at the verb as a function of reading span score. The size of the P600 
effect is calculated as the difference in mean amplitude between the high and low constraint conditions 
over the 600-800ms time window (relative to verb onset), in posterior electrodes. ○ – single participant,  
♦ - average across reading span score 
 

Table 2: Results of ANCOVAs on EEG data 

  Verb Noun 

  N400 P600 N400 P600 

 df F p F p F p F p 

Constraint 1,34 0.03 .866 8.45 .006 13.41 .001 1.81 .187 

Constraint*Span 1,34 0.03 .827 2.12 .154 0.10 .753 3.66 .064 

Anteriority*Constraint 1,34 1.51 .227 4.31 .045 15.02 < .001 0.01 .921 

Anteriority*Constraint*Span 1,34 0.07 .796 6.27 .017 2.08 .158 2.88 .099 

Laterality*Constraint 2,68 0.62 .509 0.72 .491 4.82 .014 2.24 .119 

Laterality*Constraint*Span 2,68 1.84 .175 0.48 .620 3.56 .038 6.76 .003 

Anteriority*Laterality*Constraint 2,68 0.36 .681 0.36 .662 0.72 .486 4.75 .015 

Anteriority*Laterality* 

Constraint*Span 
2,68 0.20 .796 0.04 .942 0.69 .499 0.22 .772 

 Verb 

  N400 P600 

  Anterior Posterior Anterior Posterior 

 df F p F p F p F p 

Constraint 1,34 0.57 .455 0.25 .623 2.81 .103 11.94 < .001 

Constraint*Span 1,34 0.71 .792 0.00 .994 0.03 .876 5.70 .023 

Laterality*Constraint 2,68 0.23 .796 1.08 .336 0.56 .576 0.73 .486 

Laterality*Constraint*Span 2,68 0.73 .488 2.58 .093 0.31 .731 0.41 .668 
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 Noun 

  N400 P600 

  Anterior Posterior Anterior Posterior 

 df F p F p F p F p 

Constraint 1,34 2.56 .119 19.06 < .001 2.16 .151 1.18 .282 

Constraint*Span 1,34 0.30 .590 0.72 .404 1.65 .208 4.42 .043 

Laterality*Constraint 2,68 4.42 .043 3.10 .064 0.58 .563 6.21 .007 

Laterality*Constraint*Span 2,68 1.36 .264 5.09 .014 4.24 .018 5.57 .011 

Factors: Anteriority (Anterior, Posterior), Laterality (Left, Middle, Right), Constraint (High, Low). 
Covariate: Span. N400 time window: 300-500 ms. P600 time window: 500-800 ms. The table includes all 
results involving the manipulated factor, Constraint (i.e. the main effect and any interaction that includes 
Constraint). 
 

4) Discussion 

In this study, we looked for evidence in support of the pre-updating process, namely, the integration of 

predicted material into the sentence representation in working memory prior to its occurrence in the 

input. Our results showed increased P600 amplitude at the verb in the strongly constraining sentences, 

and this effect was greater for participants with higher working memory span. We propose that this effect 

reflects integration processes prior to the onset of a highly predictable word, thus providing evidence in 

support of pre-updating. The benefits of pre-updating were observed on the predictable NP, where 

participants with higher reading span showed a greater decrease in P600 amplitude in the strongly 

constraining sentences (relative to the weakly constraining sentences), suggesting that the integration of 

an already pre-updated word was easier. These effects had the posterior distribution typical for the P600 

component. It can be mentioned that a late frontal positivity would not be expected here, as this positivity 

is elicited by unexpected words in highly constraining sentences (e.g. Brothers, Swaab, Traxler, 2015; 

Federmeier, Wlotko, De Ochoa-Dewald, & Kutas, 2007), and is therefore thought to be related to coping 

with disconfirmed predictions (see further discussion of this anterior positivity below).  

Additionally, an N400 effect was found at the NP in the low-constraint sentences relative to the 

high-constraint sentences. This result replicates the very robust finding that the amplitude of the N400 is 

greater for words with low cloze-probability relative to words with high cloze-probability (e.g. Delong, 

Urbach, & Kutas, 2005; Kutas & Hillyard, 1984; Kutas, Lindamood, & Hillyard, 1984; Wlotko & 

Federmeier, 2012). This N400 effect did not differ between the high- and low-span participants. The fact 

that the P600 effects were affected by WM capacity while the N400 effect was not, taken together with 

previous literature regarding the different processes reflected by these two components, corroborates the 

suggestion that although both pre-activation and pre-updating are expected to occur more often in the 

high-constraint condition, we can see two distinct neural responses that behave differently, reflecting the 

two distinct processes. The P600 effects being affected by WM capacity is in line with the hypothesis 

that pre-updating involves WM representations, while pre-activation occurs in long-term memory. 

These results support an architecture whereby what drives the differences due to WM capacity is not a 

difference in activation (as this would likely manifest as a difference in N400 amplitude) but rather a 

difference in the retrieval threshold which determines the activation level sufficient for pre-updating. As 

mentioned in the Introduction, we see pre-updating as a process that is initiated only if the activation of 
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the predicted content exceeds a certain threshold. The difference seen in the current study between 

participants with different reading spans can be interpreted as an indication that this threshold is 

generally lower for participants with a higher WM capacity, since pre-updating is less costly for them. 

Such an architecture would result in similar activations for all participants, but different likelihood to 

pre-update, in line with the current results.  

 

4.1) Previous studies on the processing of predictive words  

Several recent studies have investigated processing at the stage prior to the occurrence of a predictable 

word. Li, Zhang, Xia, and Swaab (2017) compared high- and low-constraint sentences in Mandarin 

Chinese, looking at the verb preceding a predictable or an anomalous noun. Their results did not show 

the P600 effect observed in our experiment, but rather a sustained anterior negativity (SAN) elicited at 

the verb, as well as reduced beta power (19-25 Hz). There are several crucial differences between the 

current experiment and the experiment of Li et al. that may have led to these different results. The first 

and probably most influential difference is that the critical region in the Li et al. experiment consisted of 

a verb, followed by a classifier or an adjective, followed by a noun. While the noun was predictable 

immediately after the verb, based on a sentence completion questionnaire, the classifier/adjective was 

not predictable. This means that in every trial the participant encountered an unpredictable word 

immediately following the verb. This was not the case in our study, as the verb in our sentences was 

always followed by the Hebrew accusative case marker ‘et’, a function word that was predicted based 

on the cloze-probability questionnaire (and possibly even more predictable in the experimental context 

as it consistently appeared in all sentences), which was followed by the noun. This allowed participants 

in the current study to precisely predict the direct object of the verb (i.e. ‘et’ + noun, forming the NP that 

immediately follows the verb), enabling its immediate integration. Another difference between the Li et 

al. experiment and ours is that since the authors of the former experiment aimed to also test the 

consequences of prediction failure, the critical noun in their experiment was anomalous in half of the 

trials, leading to a disconfirmed prediction. It is conceivable that the proportion of disconfirmed 

predictions in the experimental context affects participants’ tendency to commit to a prediction by pre-

updating it, namely that if participants repeatedly have to endure the cost of prediction failure they would 

become more cautious and avoid pre-updating. Namely, the retrieval threshold that initiates pre-updating 

may not only vary between individuals, but also be adjusted via top-down control to adapt to different 

situations. In situations with a strong incentive to predict, the threshold would be lowered, leading to 

more frequent occurrence of pre-updating. In situations such as Li et al.'s experiment, the threshold 

would be raised in order to prevent commitment to prediction which would likely be disconfirmed. This 

means that although predicted candidates would still be pre-activated, pre-updating would be less likely 

to occur. These differences may explain why no P600 effect was found at the Li et al. study. Moreover, 

if participants in that study noticed that they consistently encounter an unpredictable word immediately 

after the verb, but that the predictable word may still appear afterwards, then the results may reflect 

holding a (not-yet-integrated) prediction that is not expected to be realized immediately. This aligns well 

with the suggestion that the SAN, sometimes observed between the filler and gap sites in long-distance 

dependencies, is an index of working memory load (e.g. King & Kutas, 1995; Phillips, Kazanina, & 

Abada, 2005). Additionally, in Li et al. the influence of WM capacity was not tested. It is possible that 

due to random sampling, the participants in that study were on average with lower WM capacity then 
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our participants, and as the effects seen in our experiment were driven by the high-span participants, this 

could further contribute to the difference in the results between the two studies. 

Rommers and colleagues (2017) have also looked at the stage prior to the occurrence of a 

predictable word. They performed a reanalysis of data from a study comparing high- and low-constraint 

sentences, ending with the most predictable word or with an unexpected word (Federmeier et al., 2007). 

While in the original study, ERPs of the final word were analyzed, the new analysis focused on the time-

frequency domain, looking at the final word as well as a time-window prior to its onset. Similar to Li et 

al., Rommers et al. also found an effect of constraint in the time-frequency domain prior to the predicted 

(or unexpected) word. However, the results of Rommers et al. show a decrease in alpha power (8-12 Hz), 

rather than in beta power, in the high-constraint sentences. These inconsistent results highlight the fact 

that in investigating predictive processes we must carefully consider factors that are likely to affect the 

nature of predictions, such as predictive validity within the experimental context (i.e. the proportion of 

trials in which predictions are disconfirmed), the immediacy of the predicted content, etc. 

Fruchter and colleagues (2015) conducted a MEG experiment investigating processing of the 

adjective in adjective–noun phrases, when the adjective was predictive of the upcoming noun to different 

degrees (e.g. ‘stainless’ is highly predictive of the noun ‘steel’, whereas ‘important’ is not predictive of 

any particular noun). They found greater activity in the left middle temporal gyrus for highly predictive 

adjectives, and a significant interaction in the same area between adjective predictivity and the frequency 

of the expected noun, such that higher noun frequency led to decreased activity when the adjective was 

very predictive. We believe that this interaction with the noun’s frequency indicates that the effect found 

in that experiment is more likely to reflect pre-activation then pre-updating, as pre-activation is affected 

by lexical properties of the word being activated, while pre-updating occurs after the word has already 

been retrieved (i.e. fully activated) and is therefore not expected to be affected by the lexical properties 

of the word.  

To test whether lexical properties of the predicted words also underlie the P600 effect seen on 

the verb in our experiment, we performed a post-hoc by-items correlation analysis between the log 

frequency of the predicted word (taken from the corpus of Linzen, 2009) and the average amplitude of 

the P600 effect on the verb (defined as the difference between the high- and low-constraint conditions, in 

the 500-800ms time-window, in the 9 centro-parietal and parietal electrodes). No significant correlation 

was found (Pearson's r = .076, n = 52, p = .594). We acknowledge that this is a null result and therefore 

no strong conclusions can be drawn from it. However, this result is compatible with our conjecture that 

pre-activation, but not pre-updating, would be affected by lexical properties of the predicted word. 

 

4.2) Individual WM differences and the P600 

In the current study, the P600 effects associated with pre-updating were greater for participants with 

higher reading span, indicating that participants with higher WM capacity are more likely to engage in 

this process. A couple of previous studies found that the P600 component was affected by individual 

differences in WM capacity. Nakano and colleagues (2010) manipulated the first NP in simple SVO 

sentences such that the verb following it would either be plausible, implausible due to world knowledge, 

or in violation of thematic requirements (i.e. an inanimate subject when the verb requires an animate 

one). Their results showed that violation of world knowledge led to a similar N400 effect regardless of 

WM capacity. However, thematic violations led to distinctly different responses in the low- and high- 

span groups. An N400 effect (see discussion in the next subsection) was only observed in the low-span 
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group, while a P600 effect was observed in the high-span group. The P600 effect in the high-span group 

may indicate that participants in this group made predictions regarding the upcoming verb based on the 

subject's properties (i.e. its inanimacy), and therefore had greater difficulty integrating a verb requiring 

an animate agent.  

Vos and Friederici (2003) showed that in locally ambiguous sentences, disambiguation towards 

the less expected syntactic structure elicits a P600 effect at the disambiguating word only for participants 

with high WM capacity. This effect may indicate that high-span participants had to perform a syntactic 

reanalysis when the more predictable structure was incorrect since they had made structural predictions 

prior to the disambiguating word. One possible commonality between the findings in the two studies is 

that differences in the P600 component between high- and low-span participants tend to arise when the 

cause of the P600 effect is not syntactic difficulty per se (i.e. a complex or ungrammatical structure) but 

rather difficulty that stems from an incorrect prediction (albeit this would not necessarily be the case for 

all effects of WM capacity on the P600 component, see Kim, Oines, & Miyake, 2018). The cause of such 

differences may therefore be increased engagement in predictive processing by individuals with high 

WM abilities, stemming from the fact that these individuals have the available resources needed for the 

prediction itself, as well as sufficient resources to endure the costs incurred in the case of a contradictory 

input. 

 

4.3) Individual WM differences and the N400  

Several studies have tested the influence of individual differences in WM capacity on the N400 

component. For example, Van Petten and colleagues (1997) compared the use of lexical context and 

sentence-level context by participants with low-, mid- and high-WM capacity. Pairs of associated or 

unassociated words were embedded in congruent and incongruent sentences. Similar N400 effects for 

participants with low-, mid- and high-WM capacity were observed when comparing associated and 

unassociated word pairs, but the contrast between unassociated word pairs in congruent and incongruent 

sentences revealed a significant N400 effect only in participants with mid- and high-WM capacity. These 

results were interpreted as indicating that WM capacity affects the degree to which purely sentence-level 

context is used for prediction, but not the degree to which lexical context is. A more qualitative difference 

in ERP responses of participants with high- and low-WM capacity was shown by Nakano and colleagues 

(2010). As explained in the previous subsection, in this experiment, thematic violations elicited an N400 

effect only in the low-span group, while a P600 effect was observed in the high-span group. World 

knowledge violations led to similar N400 effects in both groups.  

The generalization that seems to emerge from these two studies is that the amplitude of the N400 

is not affected across the board by individual differences in WM capacity. Rather, specific types of 

information (i.e. sentence context, thematic requirements) can be differentially used for pre-activation 

by readers with higher or lower working memory span, leading to differences in the N400 effect. In 

contrast, effects that stem from lexical context are not affected by WM capacity. We propose that this is 

consistent with the fact that in the current experiment the N400 effect did not differ between the two 

participant groups. This is so since in our materials, the decrease in the amplitude of the N400 in the high-

constraint sentences could have originated solely from their lexical content, facilitating retrieval of the 

predicted word via spreading activation. To test this proposal, we conducted a questionnaire in which 

participants were given lists of words, with each list containing only the content words of one 

experimental sentence, randomly ordered (i.e. not in the same order as in the original sentence). 
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Participants were asked to read each list and provide the first association that comes to mind. The results 

of this questionnaire showed that the percentage of participants providing the experimental critical NP 

as an association for the word list was significantly greater in the high-constraint sentences then in the 

low-constraint ones (the average percentage was 3.4% and 37.6% for the low- and high-constraint 

sentences respectively, t (52) = 10.52, p < .001). We do not claim that these results indicate that in our 

experiment only lexical context was used for prediction and sentence-level context was ignored. 

However, the results do indicate that an N400 effect would be expected in low-span participants even if 

these participants relied mostly (or only) on lexical context for prediction. 

 

4.4) Pre-updating and prediction failure 

As mentioned in the Introduction, pre-updating entails some form of commitment to a prediction. 

However, the integration carried out during pre-updating may not be identical to the integration 

occurring upon actually encountering a word in the input, which includes building syntactic structure, 

assigning thematic roles, integrating the semantic content of the word, etc. If the integration of a 

predicted word was identical to that of an actual word, disconfirming a pre-updated prediction would 

lead to a bona fide reanalysis. On the other hand, if the integration of a predicted word is tentative, or not 

as complete as the integration of an actually encountered word, then disconfirmation of such prediction, 

though still costly, would not entail a typical reanalysis.  

Previous ERP studies have shown that a congruent-unexpected word that appears instead of a 

highly predictable word elicits a frontal positivity termed the “frontal post-N400 positivity” (e.g. Delong, 

Urbach, Groppe, & Kutas 2011; Federmeier, Wlotko, De Ochoa-Dewald, & Kutas, 2007; Ness & Meltzer-

Asscher, in press). The frontal distribution of this component is distinct from the distribution of the P600 

that is commonly elicited when a syntactic reanalysis is performed (e.g. Osterhout, Holcomb, & Swinney, 

1994; Hagoort, Brown & Osterhout, 1999), and it was suggested to reflect discourse revision (i.e. 

increased difficulty in updating a context after it was already wrongly updated, Brothers, Swaab, & 

Traxler, 2015) or inhibition of the falsely predicted word (Ness & Meltzer-Asscher, in press). The fact that 

a frontal positivity rather than a P600 is elicited in such cases may indicate that a pre-updated prediction 

has a different status then an actually encountered word, displaying tentative integration which can more 

easily be undone. 

 

4.5) An alternative approach – Surprisal and Entropy reduction 

Throughout the paper, the hypotheses and the interpretation of the results were framed under the 

assumption of serial parsing; however, our results can also be conceptualized in the framework of 

parallel and probabilistic parsing, which relate processing difficulty throughout a sentence to complexity 

matrices reflecting the amount of information conveyed in each word. One common matrix of this kind 

is Surprisal, reflecting the probability of a word given the preceding words in the sentence (Hale, 2001, 

Levy, 2008). Many studies have shown that greater surprisal is associated with increased processing 

difficulty (e.g. Boston, Hale, Kliegl, Patil, & Vasishth, 2008; Demberg & Keller, 2008; Frank, Otten, 

Galli, & Vigliocco, 2015; Smith & Levy, 2013). Another relevant matrix is Entropy reduction. Entropy 

reflects the degree of uncertainty regarding what is being conveyed, and it is therefore high when many 

possible outcomes have similar probabilities, and lower when there is a very probable outcome. As each 

word is encountered, it affects expectations and the probability distribution changes. The degree to which 

a given word reduces uncertainty (i.e. reduces entropy) represents the amount of information gained 
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(Hale, 2003). Processing more information incurs greater processing difficulty, and indeed, studies have 

shown that greater entropy reduction leads to increased reading times, independently of the contribution 

of surprisal (Frank, 2013; Linzen & Jaeger, 2016; Wu, Bachrach, Cardenas, & Schuler, 2010. See Hale, 

2016 for a review). 

We can now consider our materials in light of these findings. At the verb, cloze probability did 

not differ between conditions, and therefore surprisal was similar. However, while entropy was always 

relatively high prior to the verb, certainty regarding the noun was much greater in the high-constraint 

condition than in the low-constraint one. This means that entropy reduction at the verb was greater in the 

high-constraint condition, which should lead to greater processing difficulty. At the noun, cloze 

probability was greater in the high-constraint condition than in the low-constraint one. Therefore, 

surprisal was lower in the high-constraint condition, which would lead to decreased processing difficulty 

(relative to the low-constraint condition). Regarding entropy reduction at the noun, while, as explained 

above, entropy prior to the noun was lower in the high-constraint condition than in the low-constraint 

one, entropy following the noun was likely high in both conditions (as in both conditions there was no 

predicted continuation for the sentence after the noun). This means that at the noun there was no entropy 

reduction in any condition (entropy either increased or did not change, both considered the same in terms 

of processing difficulty, see Hale, 2016; Lowder et al., 2018). To recap, in the high- (relative to the low-) 

constraint condition, increased processing difficulty would be predicted at the verb due to entropy 

reduction (surprisal being similar in both conditions), and decreased processing difficulty would be 

predicted at the noun due to lower surprisal (entropy reduction likely being similar in the two conditions). 

These predictions are in line with our results, as the increased P600 on the verb in the high-constraint 

condition may be taken to index greater entropy reduction, and the decreased N400 and/or P600 on the 

noun in the high-constraint condition may be taken to reflect lower surprisal.  

Additional work is needed in order to provide an explanation within this framework as to why 

the observed P600 effects depended on WM capacity. Possibly, this can be done by assuming that 

individuals with higher WM capacity have a larger “beam size”, namely they consider more possible 

continuations, which would vary the Entropy experienced by different individuals. Additionally, making 

predictions regarding the specific ERP components which reflect surprisal and entropy reduction is not 

trivial and further research is needed to account, within this framework, for why we see a P600 effect at 

the verb, while at the noun we see both N400 and P600 effects (e.g. see Cho et al., 2018 for a mechanistic 

account for surprisal. Such accounts can provide a means to make predictions regarding timing and 

neural activity).  

 

4.6) Prediction mechanisms in sentence processing 

Figure 6 summarizes the proposed prediction mechanisms during sentence processing, and how they are 

incorporated within the processing stages of a word appearing in sentence context. At every stage during 

sentence comprehension, multiple representations in long-term memory are pre-activated. The 

activation level of a word is affected by the previous context, as well as by the lexical properties of that 

word. Top-down control may also limit or enhance activations, mediating the influence of factors such 

as predictive validity, task demands, etc. Once the activation level of a certain word had passed a retrieval 

threshold, it is regarded as retrieved, i.e. it can be integrated into the representation being built in WM. 

This threshold may differ between individuals and it may also be adjusted by top-down control, adapting 
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to how beneficial commitment to predictions is in a given situation (e.g. due to task demands, noisy input, 

predictive validity).  

This means that top-down control can affect prediction in two ways: first, by limiting or 

enhancing activation levels, which enables differential influence on different representations. It is 

conceivable that this kind of adjustment would take place when a certain information type is more or less 

reliable in a given situation. For example, if when reading a fantasy book animacy requirements are often 

violated, then animacy may be less heavily relied upon for prediction and therefore words that violate an 

animacy requirement may be predicted and activated. Second, top-down control can affect prediction by 

raising or lowering the retrieval threshold, which enables a more general influence on the likelihood of 

any predicted content to reach retrieval prior to its realization in the input. This kind of adaptation will 

take place for example when predictive validity is low, meaning that predictions are often violated and 

therefore forming strong predictions is not beneficial. 

If no word had passed the retrieval threshold prior to the realization of the next word in the input, 

then bottom-up activation causes retrieval of the word, and it is then integrated into the representation in 

WM. If a certain word did pass the threshold prior to the realization of the next word in the input, this 

word would then be pre-updated, meaning that a tentative integration would be initiated, until the pre-

updated word can be matched against the input. At this point, if the input matches the pre-updated word, 

integration is finalized. This stage would be less demanding than the integration of a word that had not 

been pre-updated. If the input does not match the pre-updated word, then the falsely predicted word is 

inhibited in order to enable integration of the actual input. This mismatch between prediction and input 

may also be a valuable trigger for learning mechanisms, improving future predictions. 

 

Figure 6: An outline of prediction mechanisms within the processing stages of a word 
 

A question remains regarding the specificity of the predicted content that can be pre-updated. In the 

current study, the strongly constraining sentences led to a high likelihood that a specific word would 

appear. However, sentences can be constructed in a way that will lead to a high likelihood of occurrence 
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not of a specific word, but of a word with a specific semantic or grammatical feature (e.g. animate, 

human, location, liquid substance, etc.; see Szewczyk & Schriefers, 2013). It is therefore possible that 

such features can also be pre-updated, even in the absence of prediction of a specific word. Whether or 

not this is plausible depends on how knowledge is stored in long-term memory, namely whether a feature 

can be highly activated when no specific word is highly activated, and on how representations are built 

in working memory, namely whether they can be partial and contain features of an upcoming word 

without the actual word. These questions closely relate to the suggestion by Kuperberg & Jaeger (2016), 

that pre-updating can occur at different representational levels. The P600 effects found in the current 

study provide a valuable tool for exploring this issue further. 
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2.2 Love thy neighbor: facilitation and competition between parallel predictions 
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Abstract 

Ample evidence suggests that during word recognition and production, simultaneously 

activated lexical and sublexical representations interact, demonstrating varied patterns 

of facilitation and inhibition in various tasks and measures. A separate line of research 

has led to a growing consensus that prediction during sentence processing involves 

activating multiple possible predictions. However, very little is known about the nature 

of the interactions between parallel predictions. The current study employed a speeded 

cloze task to probe competition between simultaneously activated predictions. We 

focused on the modal response (the most probable completion for a sentence) and its 

strongest competitor (the second most probable completion). Examining production 

latencies of the modal response, the results showed an interaction between competitor 

strength and the semantic relatedness between the competitor and the modal: when the 

two were related, the stronger the competitor was, the more it facilitated production; 

however, when the two were unrelated, the stronger the competitor was, the more 

inhibition it caused. These results contrast with the pattern observed for the influences 

of near and distant semantic neighbors on word recognition and production. However, 

we show that when the different nature of the tasks is taken into consideration, these 

patterns of interaction between parallel predictions can be accounted for by the 

interactive activation and competition (IAC) model used to account for previous 

neighborhood effects (Chen & Mirman, 2012). 

 

1) Introduction 

One of the most basic processes necessary for language comprehension and production is lexical 

selection, namely, retrieval of a word from the mental lexicon while other words or concepts are also 

activated. Over the years, many studies investigated this process, leading to the general conclusion that 

the difficulty of lexical selection is highly dependent on how many other words are simultaneously 

activated, and to what degree. Notably however, although the influence of simultaneously activated 

words on lexical selection was demonstrated in numerous studies, the observed effects are not uniform, 

i.e. simultaneously activated words can either facilitate or inhibit retrieval. For example, many early 

studies showed reduced reaction times for words with many orthographic neighbors, relative to words 

with fewer neighbors, in tasks such as naming and lexical decision (e.g. Andrews, 1989, 1992; Forster & 

Shen, 1996; Johnson & Pugh, 1994; Sears, Hino, & Lupker, 1995). An orthographic neighbor is a word 

that differs from the target word by a single letter. When attempting to retrieve the target word, these 

neighbors are also activated due to their orthographic similarity to the target word. The studies above 

show that the more neighbors (of this type) are activated, the more they facilitate retrieval of the target 

word. However, orthographic neighbors were also shown to cause inhibition: when orthographic 

neighbors are more frequent than the target word, they inhibit its retrieval (e.g. Davis, Perea, & Acha, 



38 
 

2009; Ferraro & Hansen, 2002; Grainger, 1990; Grainger & Jacobs, 1996; Grainger, O’Regan, Jacobs, & 

Segui, 1989, 1992; Grainger & Segui, 1990). Additionally, transposed letter neighbors (i.e. words created 

from the target word by switching the positions of two adjacent letters) also inhibit retrieval (e.g. Acha 

& Perea, 2008; Andrews, 1996; Johnson, 2009). Similarly, phonological neighbors (i.e. words that are 

phonologically similar) can exert either facilitation or inhibition (see Dell & Gordon, 2003; Mirman, 

Kittredge, & Dell, 2010). Thus, although words that are activated due to similarity to the target word 

influence the difficulty of lexical selection, this influence may be facilitatory in certain circumstances 

and inhibitory in other. 

 

1.1) Semantic neighborhood and semantic relatedness 

Semantic neighbors are words that are related to the target word, sharing semantic features with it. Much 

like orthographic neighbors, semantic neighbors are activated with the target word due to their similarity, 

and therefore they also affect lexical retrieval. Some studies have shown that words with higher semantic 

neighborhood density, i.e. more semantic neighbors, are retrieved faster, both in recognition tasks 

(lexical decision and semantic decision) and production tasks (picture naming) (Buchanan, Westbury, & 

Burgess, 2001; Duñabeitia, Avilés, & Carreiras, 2008; Locker, Simpson, & Yates, 2003; Siakaluk, 

Buchanan, & Westbury, 2003; Yates, Locker, & Simpson, 2003). Importantly, however, later studies have 

shown that this facilitation is driven by distant semantic neighbors, i.e. neighbors that share few semantic 

features with the target word (Mirman, 2011; Mirman & Magnuson, 2008). Near semantic neighbors, on 

the other hand, cause the opposite effect, i.e. neighbors which share many semantic features with the 

target word cause inhibition, rather than facilitation (Fieder, Wartenburger, & Rahman, 2019; Mirman, 

2011; Mirman & Magnuson, 2008).  

These results suggest that high semantic relatedness between simultaneously activated words 

leads to competition between these words, hindering lexical retrieval. In apparent contradiction to this 

conclusion, several sentence processing studies suggest that this may not always be the case. The 

processing of an unexpected word within a sentence context was shown to be facilitated when it is 

semantically related to the predicted word (e.g. Brothers, Swaab, & Traxler, 2015; Federmeier & Kutas, 

1999; Frisson, Harvey, & Staub, 2017; Luke & Christianson, 2016). For example, Federmeier & Kutas 

(1999) found that in a sentence such as ‘The tourist in Holland stared in awe at the rows and rows of color. 

She wished she lived in a place where they grew …’, facilitation was observed for the unexpected word 

‘roses’ relative to the unexpected word ‘palms’ (reflected in this case in decreased amplitude of the N400 

event-related potentials component), since ‘roses’ is more semantically related to the predictable word 

‘tulips’. Assuming that this facilitation stems from pre-activation of the semantically related predicted 

word, this suggests that semantic relatedness between simultaneously activated words can also cause 

facilitation. Note that the word ‘tulips’ is closely related to ‘roses’ and is thus comparable to a near 

semantic neighbor, shown to exert inhibition in recognition and naming studies. ‘Tulip’ is less related to 

‘palms’ and is thus comparable to a distant semantic neighbor, shown to exert facilitation in these tasks. 

Nonetheless, the results of the sentence processing studies mentioned above are in the opposite direction, 

i.e. greater relatedness between the unexpected word and the predicted word causes facilitation. In line 

with these results, Roland, Yun, Koenig, and Mauner (2012) have also shown that reaction times in a self-

paced plausibility judgement task (i.e. self-paced stops-making-sense task) were faster for a word the 

higher its average relatedness to alternative completions for the sentence was.  
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A crucial difference between the experiments in which close relatedness between activated 

words caused inhibition and the experiments in which it caused facilitation is that in the latter, the 

activations were induced by a sentence context. One of the main aims of the current study is therefore to 

further examine the interaction between simultaneously activated words during sentence processing, 

assessing the influence of semantic relatedness in this domain, and explaining why it may differ from 

typical semantic neighborhood effects in single-word tasks. Additionally, previous studies all examined 

the processing or production of a word that appeared in the input (either written, in isolation or in 

sentence context, or a picture of the word). In contrast, the current study focuses on interactions between 

parallel predictions induced by a sentence context that does not include the predicted words, 

manipulating the strength of the different predictions and the degree of relatedness between them.  

Admittedly, alternative completions to the same sentence are always somewhat related to one another, 

being induced by the same context. However, sentences vary greatly in how semantically related their 

possible completions are. For example, the most probable completions for sentence (1) are ‘popcorn’ and 

‘candy’, which are highly related and share many semantic features (e.g. edible items, snacks, treats, 

tasty, considered unhealthy, etc.). On the other hand, the most probable completions for sentence (2) are 

‘wheel’ and ‘mattress’, which are not very related and do not share many semantic features other than 

the fact that they can both be inflated (in some cases). Thus, the related predictions ‘popcorn’ and ‘candy’, 

and the unrelated predictions ‘wheel’ and ‘mattress’, can be considered as the equivalents of near and 

distant semantic neighbors, respectively. 

 

(1) Before the movie even started, the kids started to eat the ___ 

C. Popcorn 

D. Candy  

(2) Before the trip, Yoel looked for the pump in order to inflate the ___ 

C. Wheel 

D. Mattress 

 

In the current study we therefore test whether semantic relatedness between predictions during sentence 

processing elicits similar or opposed effects to the effects observed in single-word semantic 

neighborhood studies. 

 

1.2) Parallel predictions and the speeded cloze task 

Although, as discussed above, extensive research demonstrated influences of simultaneous activations 

on lexical selection, this phenomenon was hardly studied in regards to prediction during sentence 

processing. A recent study provides initial evidence for the influence of parallel predictions on one 

another. Staub and colleagues (2015) employed a speeded cloze task in order to assess the influence of 

cloze probability and sentence constraint on production onsets. Participants were presented with the 

beginning of a sentence (presented word by word at a fixed rate), and were instructed to produce a 

completion as quickly as possible. As in the common (non-speeded) cloze task, the cloze probability of 

each word was defined as the proportion of participants who produced this word as a completion for the 

sentence, reflecting how predictable the word is given the sentence; and sentence constraint was defined 

as the cloze probability of the sentence’s most common response, reflecting how strong of a prediction 

the sentence encourages. The most probable completion of the sentences is termed the modal response. 
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Not surprisingly, the results showed that words with higher cloze probability (i.e. more predictable 

words) were produced fasted. This result indicates that the more the context activates a word, the faster 

it is retrieved and produced as a cloze response. More relevantly, the results also showed that words with 

low cloze probability are produced faster in high constraint versus low constraint sentences. Namely, a 

low cloze probability word is produced faster when the sentence has a highly probable alternative 

completion, compared to when it does not. As explained in Staub et al. (2015), these results suggest that 

multiple possible cloze responses are activated simultaneously, racing towards a retrieval threshold. 

Since the activation of each possible response, induced by the sentence context, is in correlation to its 

predictability (and therefore its cloze probability), the modal, most probable, response would most often 

reach the threshold first. However, due to random noise in the activation levels of each possible response, 

a less probable word can reach the threshold first. This means that when a low cloze word is produced 

even though a high cloze alternative is available, the activation of this low cloze word had to be 

exceptionally high in that moment (due to noise) relative to what is expected based on its probability. 

Otherwise, the high cloze word, which receives strong activation from the sentence, would have reached 

the threshold first, and the low cloze word would not have been produced. This is what gives rise to the 

influence of constraint on the onset of low cloze responses.  

Notably, while Staub et al.'s (2015) finding that the strength of an alternative prediction can 

influence the onset of the ultimately produced response indicates that parallel predictions are 

simultaneously activated , these results can be explained without applying to direct influence of the 

activation of one response on the activation of another. Namely, the possible cloze responses can 

accumulate activation independently of one another, and the influence of constraint on the onset of a low 

cloze response merely stems from the fact that we can only measure production onset for a certain word 

when it is the first to reach retrieval threshold. A low cloze word has to be retrieved exceptionally fast in 

order for the modal, which has on average more activation, not to be produced. Thus, the influence of 

constraint on low cloze responses does not necessitate a direct interaction between the simultaneously 

activated predictions. Indeed, independent accumulation of activations is assumed in the model proposed 

by Staub et al. (2015) to capture these results (see section 4.1.2 for further consideration of this model). 

Staub el al. (2015) have also tested whether the effect of constraint on production onset of low cloze 

responses, described above, can be attributed to semantic relatedness to the modal response. Potentially, 

the shorter production onset for low cloze responses in high constraint relative to low constraint contexts 

can be due to low cloze responses' relation to the highly probable word in the former. Looking at 

production onsets of non-modal responses, the authors found that although the effect of constraint was 

unlikely to be explained in full by semantic relatedness, semantic relatedness to the modal response did 

have an effect on the production onset of non-modal responses, such that words that were more related 

to the modal response were produced faster. This result is in line with the results observed in sentence 

processing studies (e.g. Brothers, Swaab, & Traxler, 2015; Federmeier & Kutas, 1999; Frisson, Harvey, 

& Staub, 2017; Luke & Christianson, 2016; Roland, Yun, Koenig, & Mauner, 2012), and in the opposite 

direction to semantic neighborhood effects observed in single-word tasks (Fieder, Wartenburger, & 

Rahman, 2019; Mirman, 2011; Mirman & Magnuson, 2008). Importantly, this effect of semantic 

relatedness in the speeded cloze task was only assessed with regards to production onset of non-modal 

responses. This means that in the trials from which these production onsets were taken, the activation 

levels within the participant’s mind did not correspond to the cloze probability distribution (presumably 

due to random neural noise), since otherwise the modal response would ‘win the race’ towards the 
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retrieval threshold and the non-modal response would not have been produced. In order to provide an 

explanation that will reconcile the opposed influences of semantic relatedness in the different tasks, it is 

necessary to consider the underlying interactions between the simultaneously activated words, which is 

not possible when looking specifically at trials in which the underlying activations are atypical and 

unknown. In the current study we therefore focus on trials in which the modal response is produced, 

allowing us to provide additional insights by modeling the underlying activations. 

 

1.3) The current study 

The main aims of the current study were twofold: (i) to investigate the influence of relatedness between 

parallel prediction on lexical selection; and (ii) to find direct evidence for the influence of the activation 

of parallel predictions on one another. To achieve these goals, we employed a speeded cloze task, similar 

to Staub et al. (2015). We begin with an exploratory analysis of data from a previous experiment, followed 

up with a pre-registered confirmatory replication experiment. We additionally conduct an analysis as in 

Staub et al. (2015), aimed to provide an additional replication of their findings. Finally, we conduct 

simulations using Chan and Mirman’s (2012) interactive activation and competition (IAC) computational 

model (see Discussion), adapting it to account for cloze response generation. We show that it is possible 

to account for the results of the current study, as well as the results of Staub et al. (2015), within the same 

model that accounts for previously observed neighborhood effects in single-word tasks.   

In the current study, we focused on the production onset of the modal response, i.e. the most 

probable completion provided by participants in the cloze task. We asked whether the modal production 

onset is influenced by the strength (i.e. cloze probability) and the relatedness of its strongest competitor, 

i.e. the second most probable completion. If indeed alternative predictions are activated simultaneously, 

interacting with each other, then we should see an influence of the relatedness between the produced, 

modal word and its competitor. Since this influence stems from the activation of the competitor, it should 

be stronger the higher the competitor’s cloze probability is. More specifically, if the influence of 

relatedness is similar to semantic neighborhood effects in single-word tasks, then simultaneously 

activated words should cause inhibition when they are highly related to the target word, and facilitation 

when they are remotely related. If this is the case, then when the modal and the competitor are highly 

related (i.e. the equivalent of near neighbors), the higher the competitor’s cloze probability, the more 

inhibition it would cause, leading to increased production latencies for the modal word; when the modal 

and the competitor are unrelated (or remotely related, i.e. the equivalent of distant neighbors), on the 

other hand, the higher the competitor’s cloze probability, the more facilitation it would cause, leading to 

decreased production latencies. However, if the influence of relatedness is in the opposite direction then 

that observed for semantic neighborhood effects, as exemplified in sentence processing studies (e.g. 

Brothers, Swaab, & Traxler, 2015; Federmeier & Kutas, 1999), then when the modal and competitor are 

highly related, the higher the competitor’s cloze probability the more facilitation it would cause, leading 

to decreased production latencies of the modal word; conversely, for unrelated modals and competitors, 

the higher the competitor’s cloze probability, the more inhibition it would cause, leading to increased 

production latencies. 

 

2) Exploratory analysis of previous data 

In a previous study (Ness & Meltzer-Asscher, submitted), a speeded cloze task was combined with EEG 

measurement, in order to study the pre-updating mechanism (Kuperberg & Jaeger; 2016; Lau, Holcomb, 
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& Kuperberg, 2013; Ness & Meltzer-Asscher, 2018). We re-analyzed the existing behavioral data from 

this study.  

 

2.1) Materials and procedure 

The materials and the data can be found at: 

https://osf.io/vjwds/?view_only=6758ee1a8b3f4e2b993b48a36cbb8afc. Forty-eight native Hebrew 

speakers participated in the experiment. The materials consisted of 156 Hebrew sentence beginnings, 

varying in constraint. The sentence fragment was presented word-by-word in the middle of the screen at 

a fixed rate (SOA = 600 ms), followed by a blank line prompting participants to produce a completion. 

Participants were instructed to provide the first completion that comes to mind, as quickly as possible. 

The sentences were composed in pairs such that each pair included a high constraint sentence and a low 

constraint sentence (based on a cloze probability questionnaire), in order to control for lexical material, 

but constraint was treated as a continuous variable in the current analysis (see Table 1 for example 

sentences). Presentation order was randomized for each participant. Sentences from the same set were 

separated by at least 50 trials.  

 

Table 1: Example sentences 

Constraint Sentence frame 

High 

 

Biglal še-ofir    lo   makir et    ha-sifria,    ha-safranit    azra      lo    limco     et    __ 

since that-ofir not know ACC the-library, the-librarian helped him to-find ACC __ 

‘Since Ofir isn’t familiar with the library, the librarian helped him find __’ 

 

Low 

ofir xipes         ve-xipes          bemešex šaot,   aval lo    ecliax          limco    et    __ 

ofir searched and-searched for           hours, but  not succeeded to-find ACC  __ 

‘Ofir had searched for hours, but he couldn’t find __’ 

 

2.2) Analysis 

For each item, we identified the most probable completion (the modal) and the second most probable 

completion (the competitor). We assessed the relatedness between these two possible completions for 

each item via a relatedness rating questionnaire, in which 30 participants (different from the ones 

participating in the main experiments) were asked to rate, on a 7-point scale, how related the two words 

were. Ratings were normalized within participant and the average relatedness rating was calculated for 

each word pair. 

Production onset was marked using DeepWDM, a recurrent neural network for word duration 

measurement (Goldrick et al., 2018). A coder then listened to each of the recordings, transcribed the 

production, and corrected the marked onset when needed. Trials with speech errors, repairs or filled 

pauses were excluded (1.7% exclusion). Singular/plural and masculine/feminine forms of the same noun 

were collapsed by coding each noun as its singular-masculine form (e.g. ‘shirts’ and ‘shirt’ where 

counted as the same response). When the produced response consisted of more than one word, only the 

first word was coded unless the words formed a compound. Since the presented sentence fragments 

https://osf.io/vjwds/?view_only=6758ee1a8b3f4e2b993b48a36cbb8afc
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always ended with the Hebrew accusative case marker ‘et’, which only precedes definite nouns, the vast 

majority of produced responses began with a definite determiner (‘the’ - ha). Responses that included 

other determiners (e.g. kol ha-kelim – ‘all the-tools’) were coded without the determiner (such responses 

were very rare). 

To test the interaction between parallel predictions, we fitted a linear mixed-effects model to the 

production onsets of modal responses (namely only for trials in which the most probable word was 

produced). The model included the fixed factors Constraint (equal to cloze probability of the modal) and 

the interaction between Competitor cloze (the cloze probability of the competitor) and Relatedness (the 

average rating of relatedness between the modal and the competitor). Main effects of these factors could 

not be included in the model due to their correlation with Constraint, resulting in multicollinearity (VIFs 

> 10). The model included random intercepts for participants. Random effects for items were not included 

since they could not be estimated independently of the fixed effects, as each item occurs at only one level 

of Constraint (as was done in Staub et al., 2015). Random slopes of both factors were initially included in 

the model, but had to be removed in order to achieve convergence. 

 

2.3) Results  

As expected, we found a significant effect of Constraint (Est. = -0.577, SE = 0.031, df = 3849, t = -18.47, 

p < .001), such that higher constraint led to shorter production onsets. Crucially, there was also a 

significant interaction between Competitor cloze and Relatedness (Est. = -0.325, SE = 0.066, df = 3849, t 

= -4.95, p < .001), such that when relatedness was high, higher cloze probability of the competitor led to 

shorter production onsets for the modal, but when relatedness was low, higher cloze probability of the 

competitor led to longer production onsets (See Figure 1). These results indicate that alternative 

predictions are activated simultaneously, interacting with each other. This is evidenced by the influence 

of the relatedness between the produced modal word and its competitor, which is greater the stronger the 

activation of the competitor is (i.e. the higher the competitor cloze is). Moreover, the results indicate that 

the influence of relatedness is such that a highly related competitor causes facilitation, while an unrelated 

competitor causes inhibition. This is in opposition to the results observed for near and distant semantic 

neighbors in single-word tasks.  
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Figure 1. Onset times of modal responses in the data from Ness and Meltzer-Asscher (submitted), by 
cloze probability of the second most probable word (‘Competitor cloze’), relatedness between the modal 
and the competitor, and sentence constraint. Regression lines are plotted. 
 

In the analysis described above, the cloze probability of the competitor was used as a measure of 

competition strength. However, it is conceivable that a better measure would be the difference or the 

ratio between the cloze probabilities of the modal response and the competitor. We therefore created 

additional regression models, in which Competitor cloze was replaced by each of these measures.5 The 

performance of the three variants of the model was compared in order to test which measure best captures 

the competition. The model with Competitor cloze outperformed the alternatives (Competitor cloze: 

AIC = 5106.5, BIC = 5137.9, Log likelihood = -2548.2; Ratio: AIC = 5122.2, BIC = 5153.6 , Log likelihood 

= -2556.1; Difference: AIC = 5123.4, BIC = 5154.8 , Log likelihood = -2556.7). 

 

3) Replication experiment 

Since the current hypotheses were developed after exploring the pre-existing data, we carried out an 

additional experiment, which was a replication study pre-registered on OSF, with the hypotheses and 

analysis pre-determined. The pre-registration report, as well as analysis code and data can be found at: 

https://osf.io/ab84y/?view_only=c6556beeb52d455e88067bfb5c2c610e, (the pre-registration report can 

be directly accessed at: https://osf.io/tzean). 

 

3.1) Methods 

3.1.1) Participants 

The participants were 48 Tel-Aviv University students (16 males), all native Hebrew speakers, with an 

average age of 24.29 (range: 20-32). Participants were given course credit or were paid 40 NIS (~11$) for 

their participation. The experiment was approved by the Ethics Committee in Tel Aviv University. 

 

3.1.2) Materials and procedure 

The materials and procedure were identical to the previous experiment (see section 2.1 above), except 

that EEG was not recorded.   

 

3.1.3) Audio recordings – transcription, onset measurement, and data analysis 

Transcription, onset measurement, and data analysis of productions were done similarly to the previous 

experiment, except for the algorithm used for the initial automatic identification of production onset. 

Instead of DeepWDM, used in Ness & Meltzer-Asscher (submitted), in the current experiment we used 

a PRAAT script which identifies the onset of the first voiced segment in the production. Since the 

presented sentence fragments always ended with the Hebrew accusative case marker ‘et’, which only 

precedes definite noun phrases, the vast majority of produced responses began with ‘ha-’ ('the'), the 

definite determiner, which includes the voiced a vowel, enabling this script to provide an accurate onset 

for a large proportion of recordings compared to the previous experiment (the onset was manually 

corrected in 8.9% of the trials in the current experiment, as opposed to 17.5% in the previous experiment). 

 
5 In order to use comparable models with the same random effect structure, all achieving convergence, the 
random slopes had to be removed from these models. 

https://osf.io/ab84y/?view_only=c6556beeb52d455e88067bfb5c2c610e
https://osf.io/tzean
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Production onsets were analyzed with linear mixed-effects models. Analyses were conducted using the 

lmerTest package (Kuznetsova, Brockhoff, & Christensen, 2014) in the R software environment (R 

Development Core Team, 2011). Data were winsorized by replacing data points exceeding 2.5 standard 

deviations (SD) from each participant’s mean with the value of 2.5 SDs from that participant’s mean 

(affecting 3.1% of the data). All models initially included the maximal random effects structure for 

participants (i.e. intercept and slopes of all fixed effects and interactions). The random effects structure 

was reduced when necessary in order to achieve convergence (the reduced models are specified where 

relevant), by iteratively removing the random slope associated with the smallest variance (Barr et al., 

2013). Random effects for items were not included since they could not be estimated independently of 

the fixed effects, as each item occurs at only one level of Constraint (as was done in Staub et al., 2015). 

 

3.2) Results 

We first carried out the analysis reported in Staub et al. (2015) to examine the effects of constraint and 

cloze probability on production latencies. The results replicated Staub et al.'s (2015) findings, indicating 

that words with higher cloze probabilities are produced faster and that words with similar cloze 

probability are produced faster when the sentence’s constraint is higher. This analysis is reported in 

Appendix A.  

A relatedness rating questionnaire was conducted in order to assess the relatedness between 

word pairs (i.e. modal and competitor) that were not identical to those in the previous experiment, due to 

different participant completions in the two experiments. Thirty participants (different from the ones 

participating in the main experiments) were asked to rate, on a 7-point scale, how related the two words 

were. Ratings were normalized within participant and the average relatedness rating was calculated for 

each word pair. 

As in the exploratory analysis reported above, to test for competition effects we fitted a linear 

mixed-effects model to the production onsets of modal responses (i.e. only for trials in which the most 

probable word was produced). The model included the fixed factors Constraint (equal to cloze probability 

of the modal) and the interaction between Competitor cloze and Relatedness. The random slope of 

Constraint (by participants) had to be removed in order to achieve convergence. 

There was a significant effect of Constraint (Est. = -0.760, SE = 0.035, df = 3796, t = -21.82, p < 

.001), such that higher constraint led to shorter production onsets. Importantly, there was also a 

significant interaction between Competitor cloze and Relatedness (Est. = -0.212, SE = 0.088, df = 42.93, 

t = -2.42, p = .02), such that when relatedness was high, higher cloze probability of the second completion 

led to shorter production onsets, but when relatedness was low, higher cloze probability of the second 

completion led to longer production onsets (See Figures 2 and 3). 
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Figure 2. Average onset time of modal responses in the current experiment, by cloze probability of the 

second most probable word (‘Competitor cloze’), and relatedness between the modal and the competitor. 

In order to divide the data into equal bins, the trials were first divided into three bins based on Relatedness 

percentiles (High/Medium/Low); then, the trials in each Relatedness category were divided into three 

bins based on Competitor cloze percentiles (High/Medium/Low).6 

 

 

Figure 3. Onset time of modal responses in the current experiment, by cloze probability of the second 

most probable word (‘Competitor cloze’), relatedness between the modal and the competitor, and 

sentence constraint. Regression lines are plotted. 

 

 
6 Due to correlation between Relatedness and Competitor cloze, dividing the trials into Relatedness categories 
and Competitor cloze categories independently of each other (i.e. setting fixed Second cloze boundaries across 
all Relatedness categories) was not possible, since it resulted in highly unequal numbers of trials in each bin. 
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We created additional regression models, in which Competitor cloze was replaced by either the 

difference or the ratio between the cloze probabilities of the modal response and the competitor.7 Again, 

the model with Competitor cloze outperformed the alternatives (Competitor cloze: AIC = 5802.1, BIC = 

5833.4 , Log likelihood = -2896.0; Ratio: AIC = 5805.8, BIC = 5837.1 , Log likelihood = -2897.9; 

Difference: AIC = 5809.7, BIC = 5841.0 , Log likelihood = -2899.8), confirming that Competitor cloze 

best accounts for the competition effects.  

 

3.3) Discussion 

The results of the pre-registered experiment replicate the competition effects observed in the exploratory 

analysis conducted with the behavioral data from Ness & Meltzer-Asscher (submitted). The results 

indicate that when the relatedness between the modal response and the second most probable response 

(the competitor) is high, higher cloze probability of the competitor leads to shorter production onsets for 

the modal response. However, when the relatedness between the modal response and the competitor is 

low, higher cloze probability of the competitor leads to longer production onsets for the modal response, 

providing evidence for competition between the (produced) modal word and the (not produced) second 

most probable word. These results indicate that alternative predictions are simultaneously activated, 

influencing the activations of one another.  

The results also provide an additional replication of Staub and colleagues' (2015) findings 

regarding the influences of cloze probability and sentence constraint on production onset of cloze 

responses, showing that both high cloze probability and high constraint contribute independently to 

shorter production onsets.  

 

4) Accounting for cloze response generation within the IAC framework 

In two experiments, we found that activation of a closely related competitor facilitates retrieval of the 

modal response, while activation of an unrelated competitor inhibits retrieval of the modal response. 

These findings are in the opposite direction to the effects observed for near and distant semantic 

neighbors in single-word tasks. Namely, the activation of a closely related alternative prediction is 

facilitative, while the activation of a near neighbor is inhibitory. In this section we show that the current 

findings can be predicted by the same computational model that accounts for the effects of semantic 

neighbors, when the mechanisms underlying the different tasks are taken into consideration.  

As discussed in the Introduction, accumulating evidence indicates an intriguing pattern of 

conflicting neighborhood effects under different circumstances, e.g. letter substitution neighbors cause 

facilitation (Andrews, 1989, 1992; Forster & Shen, 1996; Johnson & Pugh, 1994; Sears, Hino, & Lupker, 

1995), while transposed letter neighbors cause inhibition (Acha & Perea, 2008; Andrews, 1996; Johnson, 

2009); distant semantic neighbors cause facilitation (Mirman, 2011; Mirman & Magnuson, 2008), while 

distant semantic neighbors cause inhibition (Fieder, Wartenburger, & Rahman, 2019; Mirman, 2011; 

Mirman & Magnuson, 2008). To account for these contrasts, several models where put forward, 

describing the underlying interactions that lead to the observed variation in the effects. Most of these 

models are specifically designed to account for the results obtained in a certain domain, i.e. a specific 

task or modality (e.g. models accounting specifically for reading aloud include the Dual Route Cascaded 

 
7 In order to use comparable models with the same random effect structure, all achieving convergence, the 
random slopes had to be removed from these models.  
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Model, Coltheart, Davelaar, Jonasson, & Besner, 2001; the Connectionist Dual Process Model: Perry, 

Ziegler, & Zorzi, 2007; and the Self-Organizing Lexical Acquisition and Recognition Model: Davis, 

2010). However, Chen and Mirman (2012) have constructed a general model, within the IAC framework 

(e.g., McClelland & Rumelhart, 1981), which is applicable in principle to any task or modality. Here, we 

adapt this model to account for the generation of predictions and cloze responses.  

Chen and Mirman's (2012) model consists of three layers of processing units: a meaning layer in 

which each unit represents a semantic feature, a lexical layer in which each unit represents a word, and 

a word form layer in which each unit represents a phoneme or a letter. Each unit in the lexical layer is 

bidirectionally connected via facilitatory connections to the meaning units which represent its semantic 

features, as well as to the word form units which represent its constituent letters/phonemes. Additionally, 

each unit in the lexical layer (i.e. word) is connected to all other word units by bidirectional inhibitory 

connections. This lateral inhibition implements competition during lexical selection. Lateral connections 

within the meaning layer are either facilitatory or inhibitory, depending on the co-occurrence of the 

features, i.e. features that very often appear together exert facilitation on one another, while features that 

appear together rarely or not at all exert inhibition on one another. For simplicity, the model assumes 

that all words are connected to ten semantic features. Additionally, for simulations related to semantic 

neighborhood, the word form layer (phonemes or letters) was removed since it would not have any 

influence on the relevant effects. This layer would likewise not be relevant in the current simulations, 

and was removed from them.  

Input activations enter the model either from the meaning layer or from the word form layer, 

depending on the simulated task. For example, in an auditory lexical decision task, the input activates 

the phonemes that the word consists of (which in turn activate units in the lexical layer). In a picture 

naming task, on the other hand, the input activates semantic features of the word (which in turn activate 

units in the lexical layer). In each iteration during the simulation, the amount of facilitation and inhibition 

that each unit receives from its connections is calculated, and activation levels are updated accordingly. 

Reaction times are defined as the number of iterations it took for a word unit to reach a pre-determined 

activation threshold, i.e. lexical selection is completed once a word reaches retrieval threshold.8 

While the amount of facilitation exerted in the facilitatory connections between layers is linearly 

dependent on unit activation, the strength of inhibition exerted in the inhibitory connections within the 

lexical layer is a non-linear function of unit activation (namely, a sigmoid function), such that weakly 

activated word units exert very little inhibition, and strongly activated words exert very strong inhibition. 

Ultimately, whether a certain manipulation is predicted by the model to cause inhibition of facilitation 

depends on what is more significantly increased by the manipulation: the activation added to the target 

word via between-layers facilitatory connections, or the inhibition incurred to the target word via within-

layer inhibitory connections. 

The simulations conducted by Chen and Mirman (2012) have shown that the model correctly 

predicts the direction of neighborhood effects observed in a variety of tasks and modalities. Most 

relevantly, the model correctly predicts that in single-word tasks (e.g. word recognition and picture 

 
8 Here we only provide a description of aspects of the model that are relevant for our current simulations. For a 

full description of the model and previous simulations see Chen and Mirman (2012). 
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naming) many near semantic neighbors (relative to few) cause inhibition, while many distant neighbors 

(relative to few) cause facilitation. Near semantic neighbors are modeled as words that have high overlap 

in semantic features with the target word, i.e. connected to 8 (out of 10) of the target word’s semantic 

features. In this case, the neighbor will be almost as strongly activated by the target’s semantic features 

as the target itself. Thus, the activation of the neighbor at the lexical level would be strong and the 

inhibition it would exert on the target word would outweigh the additional facilitation that the target 

word would get from the shared features (due to their facilitatory connections with the neighbor being 

bidirectional). This would be the result mainly since, as mentioned above, the inhibition is non-linearly 

dependent on unit activation (while the facilitation is linearly dependent on unit activation) and would 

thus be greater than the facilitation when the neighbor’s word unit activation is high. On the other hand, 

distant semantic neighbors, which are modeled as words that are connected to 4 (out of 10) of the target 

word’s semantic features, are weakly activated by the target’s semantic features. Therefore, the 

activation of the neighbor at the lexical level would be weak, exerting very little inhibition on the target 

word, which would be outweighed by the additional facilitation that the target word would get from the 

shared features (due to their bidirectional facilitatory connections with the neighbor). 

 

4.1.1) Relatedness and competitor cloze 

Crucially, in Chen and Mirman’s (2012) simulations, the input is assumed to only activate the features of 

the target word, and other words are activated due to their connections with shared features. This 

assumption is appropriate for e.g. word recognition and picture naming, for which the input is the word 

itself, or a picture of it. However, this is not the case when considering cloze responses, for which the 

input is a sentence context. A given context can generate several alternative predictions, activating the 

features of various words to different degrees based on their probabilities. This means that words other 

than the produced cloze response (which we will refer to as the target word henceforth) receive activation 

directly from the input, and not only by association to the target word.  

As mentioned in the Introduction, sentences differ in the degree to which alternative completions 

share semantic features with each other. Returning to the example discussed in the introduction, the most 

probable completions for sentence (1) are ‘popcorn’ and ‘candy’, which share many semantic features, 

while the most probable completions for sentence (2) are ‘wheel’ and ‘mattress’, which barely share any 

semantic features. Therefore, we assume that in sentence (2), the activation of the features of the target 

word ‘wheel’ is proportional to the probability of this word only. In sentence (1), the activation of the 

features which are unique to the target word ‘popcorn’ is also in proportion to this word's cloze 

probability; however, we assume that the features shared by ‘popcorn’ and ‘candy’ are activated in 

proportion to the sum of the cloze probabilities of these two words. The input activations of the target 

word are thus not based only on the target word’s cloze probability, but also on the cloze probability of 

alternative predictions with shared semantic features. In other words, the target word can benefit from 

input activation of the competitor if it is semantically related. 

Indeed, with the additional assumption that in the cloze task the input activation of each feature 

is proportional to the sum of the cloze probabilities of the cloze responses that share it, the model predicts 

the results observed in the current study9. In the first simulation we modeled a sentence in which the 

 
9 The code for our simulations can be found at: 
https://osf.io/ab84y/?view_only=c6556beeb52d455e88067bfb5c2c610e 

https://osf.io/ab84y/?view_only=c6556beeb52d455e88067bfb5c2c610e
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constraint (i.e. the cloze probability of the modal/target word) is 0.6, and the competitor’s cloze is 0.4, 

namely, a strong competitor. We manipulated the relatedness between the target and the competitor such 

that a related word shared 8 (out of 10) semantic features with the target word, and an unrelated word 

shared only one feature.10 The results of the simulation are shown in Figure 4A. These results show faster 

activation and decreased reaction time for the target when the competitor is related to the target word, 

relative to when it is unrelated, in line with the results observed in the current study. 

In an additional simulation, we explored the influence of the competitor’s cloze on the relatedness effect. 

This simulation was identical to the first one, except that the competitor’s cloze was 0.2 (instead of 0.4 in 

the first simulation). The results of the simulation are shown in Figure 4B. These results show a smaller 

facilitation effect by a related competitor, and a smaller inhibition effect by an unrelated competitor, 

relative to the first simulation. 

The two simulations together thus show an interaction between competitor cloze and 

relatedness, as observed in the current study. For a closely related competitor, the higher its cloze 

probability, the more it causes facilitation, and for an unrelated competitor, the higher its cloze 

probability, the more it causes inhibition. Thus, although the current results contrast with the results 

observed for semantic neighborhood effects, the opposite direction of the effects stems from the 

characteristics of the input activations, and can be predicted within the same computational model.  

 

 

Figure 4. Simulation results: activation levels over time for the target word (i.e. the produced modal 

response) and the competitor, when the target and the competitor are related (Rel) or unrelated (Unrel). 

The competitor’s cloze probability is 0.4 in panel (A) and 0.2 in panel (B). The bar plots show reaction 

times (RT) predicted by the model, i.e. the number of iterations until the target word reached the retrieval 

threshold of 0.7.  

 

4.1.2) The influence of constraint on the production of low cloze responses 

As discussed in the Introduction, Staub and colleagues (2015) have shown that words with higher cloze 

probability are produced faster in the speeded cloze task, and that words with similar (low) cloze 

 
10 We note that modeling the unrelated word as not sharing any features with the target word, rather than 
sharing one feature, did not significantly alter the results, and the direction of effects predicted by the model 
remained the same. We chose to model the ‘unrelated’ word as sharing a (single) feature with the target word 
in order to acknowledge that words that are activated by the same sentence context cannot truly be 
completely unrelated (otherwise there would not be a context that could be completed by both). 

(B) (A) 
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probabilities are produced faster in high constraint (relative to low constraint) sentences. These results 

were replicated in Ness & Meltzer-Asscher (submitted) as well as in the current experiment. In their 

paper, Staub and colleagues (2015) suggested a computational model to account for these results. 

However, in that model each potential response independently accumulates activation, and the activation 

of one response cannot influence the activation of another. Thus, while the model accounts for the 

influences of cloze probability and constraint, it cannot (in its current form) account for any influence of 

relatedness between alternative responses.  

We therefore sought to adapt Chan and Mirman’s (2012) IAC model to fully capture the 

generation of cloze responses, including the influences of cloze probability and sentence constraint. We 

did this by the addition of random noise. In the current model, without noise, the modal response will 

always be the first to reach the threshold. However, participants do not uniformly produce the most 

probable word in the cloze task, which indicates that the race towards the retrieval threshold is noisy, 

allowing for a less probable word to occasionally win over a more probable one. The addition of noise 

to the model was implemented by adding a random number, drawn from a normal distribution with a 

mean of zero, to the activation level of each unit in each iteration. The random noise could therefore 

either increase or decrease the activation level.  

We then conducted two additional simulations, in order to test the influences of cloze probability 

and sentence constraint. In the first simulation we modeled a sentence for which the possible cloze 

responses have cloze probabilities of 0.6 and 0.4 (i.e. the sentence constraint is 0.6). In the second 

simulation we modeled a sentence for which the possible cloze responses are 0.4, 0.2, 0.2, 0.2 (i.e. the 

sentence constraint is 0.4). For simplicity, none of the cloze responses in these simulations were related 

(i.e. each word was connected to 10 different semantic features). Each simulation was run 10000 times. 

The results are plotted in figure 5. First, higher cloze probability led to reduced reaction times (see figure 

5A), since the higher the cloze probability of a word is, the higher the input activation it receives. 

Additionally, looking at reaction times for the words with 0.4 cloze probability in both simulations 

(namely when sentence constraint is 0.6 vs. when it is 0.4), reaction times were lower in the high constraint 

sentence then in the low constraint sentence (see figures 5B and 5C). This is in line with the explanation 

discussed in the introduction (proposed by Staub et al., 2015), that reaction times for low cloze responses 

in high constraint sentences are decreased simply since the high cloze alternative obscures the 

measurement of potentially longer retrieval times. Namely, if the low cloze word had not been retrieved 

fast enough to win over the high cloze alternative, it would not have been produced, since the high cloze 

alternative would be produced. The results of the simulations therefore capture the behavioral findings 

regarding the influences of cloze probability and sentence constraint on production onsets.   

 

 

 

 

 

(B) (A) (C) 
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Figure 5. Simulation results: average reaction time by cloze probability (A). Reaction times for the 0.4 

cloze probability response in high (A) and low (B) constraint.   

 

5) General discussion 

The current study employed a speeded cloze task in order to examine the interaction between parallel 

predictions. We assessed whether, and how, production onsets of the modal response are influenced by 

the strength and relatedness of its strongest competitor, the second most probable completion. In an 

exploratory analysis using previous data, as well as in a pre-registered replication, we found that when 

the modal response and the competitor were related to each other, higher cloze probability of the 

competitor led to shorter production onsets of the modal response. This means that activation of the 

related competitor facilitated the retrieval of the modal response. However, when the competitor was 

unrelated to the modal response, higher cloze probability of the competitor led to longer production 

onsets of the modal response. This means that activation of the unrelated competitor inhibited the 

retrieval of the modal response. These results provide direct evidence for the prevalent assumption that 

multiple predictions are activated simultaneously. More specifically, the results demonstrate interaction 

between parallel predictions, showing for the first time that parallel predictions do not accumulate 

activations independently, but that instead, the activation levels of different predictions directly 

influence one another.  

Additionally, the results show that the influence of relatedness between parallel predictions 

during sentence processing is in the opposite direction than the effects observed for near and far semantic 

neighbors in single-word tasks. Namely, the activation of a closely related alternative prediction in the 

current study is facilitative, while the activation of a closely related neighbor was found in previous 

studies to be inhibitory. We show that although these effects of semantic relatedness manifest in different 

directions, they both stem from dynamic interactions between and within levels of representation. The 

current results can thus be explained by taking into consideration the different inputs to lexical selection 

in prediction during sentence processing and cloze response generation, as compared to single-word 

tasks such as word recognition or picture naming. Specifically, since in single-word tasks the input is the 

word itself (or a picture of it), this input can be assumed to only activate the features of the target word, 

and other words are activated only due to their connections with shared features. With a sentence context, 

on the other hand, a given context generates several alternative predictions, directly activating the 

features of various words to different degrees based on their probabilities. This means that words other 

than the target word receive activation directly from the input, and thus, the target word can benefit from 

input activation of the competitor if it is semantically related. 

The fact that the same model accounts for behavior in both word recognition and cloze response 

generation despite the different manifestation of relatedness effects indicates that the generation of 

predictions occurs under the same principles that operate during the retrieval of a word when it is 

presented in the input. The results and simulations thus hint that the underlying architecture that supports 

prediction is the same as that underlying word processing in general. 

Previous results and model simulations have led Chen and Mirman (2012, 2015) to suggest that, 

in general, simultaneously activated words will exert net inhibitory effects if they are strongly activated, 

and net facilitative effects if they are weakly activated. This was most directly demonstrated by showing 
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that the same phonological neighbors exert inhibition when they are strongly activated, and facilitation 

when their activation is reduced (due to inhibition from activated semantic competitors; Chen & Mirman, 

2015). Notably, the current study indicates that this generalization does not hold in all instances. Our 

results show that stronger absolute activation of a competitor can be facilitatory if this activation adds to 

the target word’s activation as well (i.e. a related alternative prediction). As the target word has higher 

activation levels relative to the competitor, the addition of activation to shared features contributes more 

to the target word then to the competitor due to the non-linear inhibition at the lexical level, which means 

that the stronger the related competitor is, the more it would facilitate the retrieval of the target word. 

As explained above, our account for the results emerges from Chen and Mirman’s (2012) model, and we 

attribute the observed effects to the balance between activations from semantic features and inhibition 

at the lexical level. While this model provides a plausible mechanism that captures our results (as well 

as previous results), we would like to acknowledge that there could be alternative architectures that can 

potentially account for the same pattern. For example, to capture the current data we can consider an 

architecture that contains a level of event representations, or situation models.11 A sentence fragment for 

which the two most probable completions are highly related likely represents a less ambiguous situation 

than a sentence fragment for which the two most probable completions are unrelated. For example, 

looking again at the sentences in (1)-(2) discussed above, a sentence such as ‘Before the movie even 

started, the kids started to eat the __’ represents very similar scenarios whether it is completed by 

‘popcorn’ or by ‘candy’. In this case, a strong competitor that is highly related to the modal response 

indicates that there is little ambiguity in the situation model that the sentence fragment evokes, and 

therefore responses are fast. On the other hand, a sentence such as ‘Before the trip, Yoel looked for the 

pump in order to inflate the __’ can represent somewhat different scenarios when it is completed by 

‘wheel’ and when it is completed by ‘mattress’ (e.g. a planned bike ride versus a planned camping trip). 

In this case, a strong competitor that is not highly related to the modal response indicates that there is 

substantial ambiguity in the situation model that the sentence fragment evokes, which may delay 

responses. Thus, the current results may also be explained as competition and facilitation at the level of 

event representation. The current study cannot decide between the two accounts, although we do note 

that the account based on Chen and Mirman’s (2012) model has the advantage of adding very minimal 

assumptions to a model that already accounts for a wide range of phenomena. Further research is needed 

in order to tease apart representations at the lexical level from those at the situation level.  

The study reported here can form a basis for several future directions. First, one limitation of the 

current study is that in investigating the interaction between parallel predictions, we specifically tested 

the influence of the strongest competitor, namely the second most probable word, on production of the 

modal word. However, it is likely that the entire distribution of possible responses influences the 

production of any possible response. Looking at these complex effects posits some interesting 

methodological and theoretical considerations, such as how to create measures that weigh the influences 

of multiple words, taking into account not only the probability of each response but also the degree to 

which each word is related to the produced word, and to the other alternatives. 

Additionally, the current study focused on the effect of semantic relatedness between predictions. 

However, neighborhood effects show that orthographic and phonological similarity between 

simultaneously activated words can also influence lexical selection. Further research is needed in order 

 
11 We thank Adrian Staub for proposing this alternative account.  
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to test whether orthographic and phonological similarity between parallel predictions has an effect on 

cloze response generation, and in what direction.  

Lastly, the influence of parallel predictions on one another can potentially take place at different 

stages – during activation, selection/retrieval, maintenance in working memory, production planning 

and so on. We have shown that competitor cloze, rather than the difference or ratio between cloze 

probabilities of the modal response and the competitor, best accounted for the interaction we observed. 

This finding suggests that the interaction found here likely stems from competition at the activation 

stage, rather than difficulty in selection mechanisms and/or retrieval, since difficulty stemming from 

competition in these latter stages is likely to depend on the modal response’s strength over the alternative 

rather than directly on how strong the alternative is in absolute terms. Moreover, the model used here 

(Chen & Mirman, 2012), which assumes interaction during the activation of words (prior to retrieval), was 

able to capture the behavioral results. However, the interaction between parallel predictions may not be 

limited to this stage only. Further research can pinpoint the specific stage, or stages, that are relevant for 

these interactions, in order to better understand the interplay between simultaneously activated words. 
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7) Appendix A – replication of Staub et al. (2015)'s analysis with the current data 

We followed the analysis reported by Staub et al. (2015). Model 1 included cloze probability as the only 

fixed effect. In order to achieve convergence, the random slopes had to be removed in this model. Higher 

cloze probability led to shortened production onset (Est. = -0.279, SE = 0.007, t = -39.35, p < .001). Model 

2 included constraint as a fixed factor, as well as a factor indicating whether or not the modal response 

was produced. In order to achieve convergence, the random slopes of Constraint and the interaction 

between Constraint and Modal had to be removed in this model. A significant effect of Constraint was 

found (Est. = -0.192, SE = 0.008, t = -22.37, p < .001), such that higher constraint led to shortened 

production onset. Additionally, modal responses were produced significantly faster than non-modal 

responses (Est. = -0.247, SE = 0.030, t = -8.20, p < .001), indicating that the effect of cloze probability in 

Model 1 cannot be solely driven by constraint (See Figure 6A). Model 3 included cloze probability and 

constraint as fixed factors, and only included responses with cloze probability <.4, allowing to separate 

constraint and cloze probability. In order to achieve convergence, all random slopes had to be removed 

in this model. Significant effects of both cloze probability and constraint were found (cloze probability: 

Est. = -0.167, SE = 0.011, t = -15.20, p < .001; constraint: Est. = -0.135, SE = 0.012, t = -10.97, p < .001), 

confirming that the production of low cloze completions is indeed influenced by sentence constraint (See 

Figure 6B). The results of the current experiment therefore provide an additional replication of the 

findings of Staub and colleagues (2015). The full results of the three models are reported in Table 2. 

 
Figure 6. (A) Mean onset time for modal and non-modal responses, in sentences with high (>0.5) and low 

(<=0.5) constraint. (B) Mean onset time by cloze probability, in sentences with high (>0.5) and low (<=0.5) 

constraint. Error bars represent standard error of the mean. 
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Table 2: Mixed-effects regression model coefficients 

 Estimate SE df t value p value 

Model 1 
Cloze probability 0.279 0.007 7316 -39.35 < .001 

Model 2 
Constraint 0.192  0.008 7302 -22.37 < .001 
Modal -0.247  0.030 58.76 -8.20 < .001 
Constraint : Modal -0.020 0.017 7295 -1.18 0.240 

Model 3 
Cloze probability -0.167  0.011 3910 -15.20 < .001 
Constraint -0.135  0.012 3907 -10.97 < .001 
Cloze probability : Constraint -0.025 0.016 3907 -1.56 0.118 
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2.3 From pre-activation to pre-updating: A threshold mechanism for commitment to strong 

predictions 

Tal Ness and Aya Meltzer-Asscher (2021b) 

Psychophysiology, 58(5), e13797 

 

Abstract 

Ample evidence suggests that during sentence processing comprehenders can “pre-

activate” lexical/semantic knowledge stored in long-term memory. A relatively recent 

development suggests that in some cases a stronger form of prediction is employed, 

involving “pre-updating” the predicted content into the sentence’s representation being 

built in working memory. The current study argues for an activation threshold 

mechanism by which pre-updating is initiated, within the routine processing stages of a 

word in a context. By combining a speeded cloze task with event-related potentials, we 

were able to analyze electrophysiological data measured prior to when participants were 

prompted to produce a completion, based on the participant’s cloze response, reflecting 

their strongest prediction at that specific moment in time. A P600 effect reflecting pre-

updating was observed in high (relative to low) constraint sentences, even in trials where 

the participant predicted a low cloze word. The results support a mechanism in which 

multiple predictions accumulate activations, 'racing' towards a retrieval threshold. Once 

the activation level of a certain word passes the threshold, the word is integrated into the 

sentence representation in working memory. Pre-updating occurs if a certain prediction 

passes retrieval threshold prior to its realization in the input. 

 

1) Introduction 

With the accumulation of a large body of evidence indicating that prediction plays a role in sentence 

processing, numerous recent studies have begun to explore the nature and dynamics of prediction, in 

order to gain a fine-grained understanding of its underlying mechanisms (e.g. Brothers, Swaab, & 

Traxler, 2015; DeLong, Quante, & Kutas, 2014; Ito et al., 2016; Kuperberg, Brothers, & Wlotko, 2020; 

Lowder et al., 2018; Staub, 2011; Szewczyk & Wodniecka, 2020; Wlotko & Federmeier, 2015; see 

Federmeier, 2007; Ferreira & Chantavarin, 2018; Kuperberg & Jaeger, 2016; Van Petten & Luka, 2012, 

for relevant reviews). 

Prediction in sentence processing is frequently suggested to manifest as “pre-activation” of 

lexical/conceptual knowledge stored in long-term memory. The activation level of predicted content can 

increase due to spreading activation from previous linguistic material, or due to more controlled 

prediction processes, facilitating its retrieval when it appears in the input. Pre-activation was suggested 

to underlie a wide range of findings showing reduced processing difficulty for predictable as compared 

to unpredictable words, demonstrated in reduced reaction times (e.g. Ehrlich & Rayner, 1981; 

Schwanenflugel & Shoben, 1985; Traxler & Foss, 2000), decreased amplitudes of the N400 event-related 

potentials (ERP) component (e.g. Delong, Urbach & Kutas, 2005; Kutas & Hillyard, 1984; Wlotko & 

Federmeier, 2012) and other measures. 
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A more recent development suggests that in some cases, a stronger form of prediction can occur. 

When a certain prediction is highly activated, it can be “pre-updated”, i.e. integrated into the sentence’s 

representation being built in working memory (Kuperberg & Jaeger, 2016; Lau, Holcomb, & Kuperberg, 

2013; Ness & Meltzer-Asscher, 2018a). This distinction between pre-activation and pre-updating 

highlights the difference between priming of multiple entities (pre-activation) and commitment to a 

specific prediction (pre-updating). By hypothesis, only the latter type of prediction would incur 

additional processing costs if the prediction is disconfirmed. Since a pre-updated prediction is integrated 

into the sentence representation, if it is then disconfirmed, inhibition or suppression is required in order 

to “override” the integrated representation and allow integration of the actual input instead (Kuperberg, 

Brothers, & Wlotko, 2020; Ness & Meltzer-Asscher, 2018b).  

This pattern was indeed found in event-related potentials (ERP) studies which compared the 

responses to unpredictable words in sentences with different constraint. Predictability is commonly 

measured in a cloze task: participants are given truncated sentences and are asked to provide the first 

completion that comes to mind for each sentence; the cloze probability of a word is defined as the 

proportion of participants who provide it as a completion, and it is considered to reflect how predictable 

the word is. The constraint of a sentence is defined as the cloze probability of the most probable 

completion for a sentence, and it reflects the degree to which the sentence leads to a strong prediction. 

Several studies found that N400 amplitudes do not differ between low-cloze words in high vs. low 

constraint sentences. This finding suggests that the N400 reflects activation levels, associated with pre-

activation, rather than a penalty for disconfirmation of strong predictions. However, low-cloze words 

that follow high as opposed to low constraint contexts were found to also elicit a late anterior positivity, 

the ‘frontal post-N400 positivity’ (fPNP) component (e.g. Brothers, Swaab, Traxler, 2015; Federmeier, 

Wlotko, De Ochoa-Dewald, & Kutas, 2007; Kuperberg, Brothers, & Wlotko, 2020; Ness & Meltzer-

Asscher, 2018b; see Van Petten & Luka, 2012 for a review). Thus, the disconfirmation of a strong 

prediction incurs additional processing costs that are not observed if no strong prediction was formed in 

the first place. As explained above, the pre-updating mechanism provides a plausible reason for these 

additional processing costs associated with the disconfirmation of strong predictions, as pre-updating 

entails integration into the sentence representation, which needs to be overridden to accommodate the 

actual input.  

The association between pre-updating and commitment to a certain prediction naturally stems 

from the limitations of working memory (WM). Unlike long-term memory, which can simultaneously 

hold a seemingly infinite number of representations, much less information can be held and processed 

effectively in WM (e.g. “the magical number seven” suggested by Miller, 1956, “the magic number four”, 

Cowan, 2010; Green, 2017, or even fewer items, as suggested by McElree, 2001). Therefore, it is unlikely 

that many competing predictions can simultaneously be pre-updated. For this reason, only a prediction 

that is highly activated would be integrated into the sentence’s representation in WM.  

 

1.1) Pre-updating and the P600 ERP component 

The P600 component, a late positive deflection in the EEG which is maximal over posterior sites, was 

initially observed in response to syntactic anomalies (e.g. violation of subcategorization constraints, 

Osterhout & Holcomb, 1992, or agreement errors, Hagoort, Brown & Groothusen, 1993), as well as in 

“garden path” sentences, i.e. sentences in which syntactic reanalysis is needed (e.g. Hagoort, Brown & 

Osterhout, 1999; Osterhout & Holcomb, 1992; Osterhout, Holcomb, & Swinney, 1994). However, 
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increased P600 amplitude was later observed also in grammatical sentences that do not involve 

reanalysis. For example, the component has been found in “semantic illusion” contexts, i.e. grammatical 

sentences that are semantically anomalous due to thematic role reversal or thematic violations (the 

"Semantic P600", see e.g. Chow & Phillips, 2013; Hoeks, Stowe, & Doedens, 2004; Kim & Osterhout, 

2005; Kuperberg et al., 2007).  

Interestingly, increased P600 amplitude is also observed when a filler-gap dependency is 

completed (e.g. Felser, Clahsen, & Munte, 2003; Fiebach, Schlesewsky & Friederici, 2002; Gouvea, 

Phillips, Kazanina, & Poeppel, 2010; Kaan, Harris, Gibson, & Holcomb, 2000; Phillips, Kazanina, & 

Abada, 2005). For example, the verb “imitated” in a sentence such as (1a) elicits an increased P600 

amplitude relative to the same verb in a sentence such as (1b) (Kaan et al., 2000). The difference between 

these sentences is that upon encountering the verb "imitated" in (1a), the filler ("who") is also integrated, 

as the complement of that verb, receiving the thematic role of theme. In contrast, the processing of the 

verb "imitated" in (1b) does not include this additional process of integrating a complement. Thus, there 

are more integration demands at the verb in (1a) relative to (1b), and these are presumably reflected in the 

larger P600.  

 

(1) a. Emily wondered who the performer in the concert had imitated __ for the audience’s 

amusement. 

b. Emily wondered whether the performer in the concert had imitated a pop star for the 

audience’s amusement. 

 

These and other findings have led numerous researchers to argue that the P600 reflects integration 

processes (Brouwer, Fitz, & Hoeks, 2012; Delogu, Brouwer, & Crocker, 2019; Kaan, Harris, Gibson, & 

Holcomb, 2000; For further discussion regarding the functional nature of the P600, also see Chow & 

Phillips, 2013).   

A recent study used the P600 ERP component to look for electrophysiological indication for pre-

updating (Ness & Meltzer-Asscher, 2018a). In this study, participants read strongly and weakly 

constraining sentences in Hebrew (e.g. 2a and 2b below, respectively) while ERPs of the predictable noun 

(‘the book’), as well as its preceding verb (‘find’), were recorded.  

 

(2) a. biglal še-ofir    lo    makir et    ha-sifria,     ha-safranit    azra   lo     limco   et  

    since that-ofir not  know  ACC the-library, the-librarian helped him  to-find ACC  

    ha-sefer   še-hu  haia  carix 

    the-book that-he COP  needed 

    ‘Since Ofir isn’t familiar with the library, the librarian helped him find the book he 

    needed.’ 

b. ofir xipes        ve-xipes         bemešex šaot,    aval lo   ecliax         limco   et  

    ofir searched and-searched for            hours, but  not succeeded to-find ACC  

    ha-sefer   še-hu   haia carix 

    the-book that-he COP needed 

    ‘Ofir had searched for hours, but he couldn’t find the book he needed.’ 
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The crucial finding of the study was that in the highly constraining sentences (e.g. 2a), relative to the 

weakly constraining ones (2b), an increased P600 was observed at the verb, where the prediction was 

generated. This finding indicates integration of the strongly predicted word into the sentence 

representation prior to its appearance in the input, namely, pre-updating. The P600 in this case reflects 

an integration process very similar to the one discussed above with regard to the completion of filler-gap 

dependencies. An increased P600 is observed at the verb in (1a) relative to (1b) due to integration at this 

point not only of the verb, but also its complement (i.e. integrating the filler, assigning it a thematic role 

at the gap position). Similarly, an increased P600 amplitude is observed at the verb in (2a) relative to (2b) 

due to the integration of not only the verb, but also its (predicted) complement. Of course, these are 

different types of predictions (i.e., a grammatical prediction for a gap versus a lexical prediction for an 

upcoming word), but the underlying integration processes indexed by the P600 appear to be similar (e.g. 

thematic role assignment, phrase structure building, etc.). We note that the interpretation of the P600 

effect observed at the verb in (2a) relative to (2b) does not hinge on a highly specific characterization of 

the processes reflected by the P600; it is compatible with many of the current accounts for the P600 

component. Accumulating evidence suggests that, unlike the N400 component, the P600 is unlikely to 

reflect activation levels or retrieval difficulty; instead, it was argued to reflect integration processes (e.g. 

Brouwer, Fitz, & Hoeks, 2012; Delogu, Brouwer, & Crocker, 2019; Kaan, Harris, Gibson, & Holcomb, 

2000). Thus, although the specific functional nature of the P600 component is still under debate, if any of 

the processes involved in integrating a word - syntactic structure building, dependency formation, 

thematic role assignment, semantic integration, etc. - affect P600 amplitude, this is sufficient for the 

conclusion that pre-updating (i.e. integrating a predicted word) is reflected in the P600 effect observed in 

Ness & Meltzer-Asscher (2018a), as well as in the current study. 

Interestingly, the P600 pre-updating effect observed in Ness & Meltzer-Asscher (2018a) was 

greater for participants with higher WM performance, as measured by a reading span task. This finding 

suggests that the tendency to engage in pre-updating depends on this individual trait, which is consistent 

with the claim that pre-updating involves WM representations.  

In addition, this P600 pre-updating effect on the verb was followed by greater decrease in P600 

amplitude at the noun in highly constraining versus weakly constraining sentences, for participants with 

higher WM performance. This finding reflects the decreased integration demands when encountering a 

predicted word that had already been pre-updated. 

 

1.2) When and how is pre-updating initiated? A threshold mechanism   

The results discussed above provide support for the pre-updating mechanism; however, it is still not 

clear when and how this process is initiated. Understanding what triggers pre-updating is vital in order 

to establish an accurate model of how the two prediction mechanisms, namely pre-activation and pre-

updating, are incorporated within the general processing stages of a word in a sentence. The current study 

is aimed to test the view presented in Ness & Meltzer-Asscher (2018a), shown in Figure 1.  
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Figure 1. An outline of prediction processes within the processing stages of a word. Adapted from Ness 
& Meltzer-Asscher (2018a) with permission. 
 

At every stage during sentence processing, multiple representations in long-term memory are pre-

activated. Many different factors contribute to the activation level of a word: the context, lexical 

properties of the word (e.g. frequency), idiosyncratic influences and random noise. Once the activation 

level of a certain word reaches a retrieval threshold, this word is regarded as retrieved, which initiates its 

integration into the sentence’s representation being built in WM.  

In most cases, after processing word N in the sentence, no additional word passes the retrieval 

threshold prior to the realization of the next word, N+1. Then, bottom-up activation of word N+1 from 

the input will push it past the retrieval threshold, and its integration into the sentence’s representation 

will occur. However, if after processing word N, the pre-activation of a certain word is strong enough, it 

can pass the threshold prior to bottom-up evidence, namely prior to the realization of the next word in 

the input. This is when pre-updating occurs. The strongly predicted word will be tentatively integrated 

into the sentence’s representation, prior to its realization in the input. When the next word appears in the 

input, the pre-updated word will be matched against it. At this point, if the input matches the pre-updated 

word, integration is finalized. This stage would be less demanding than the integration of a word that had 

not been pre-updated. If the input does not match the pre-updated word (which would not occur very 

often, since pre-updating of a weak prediction would not have happened in the first place), then inhibition 

of the falsely predicted word is needed in order to enable integration of the actual input, incurring 

processing costs.  

An additional aspect of the suggested mechanism is that the retrieval threshold is variable, and 

may shift in order to keep the balance between the benefits of confirmed pre-updates and the costs of 

disconfirmed ones. First, the threshold can differ between individuals, e.g. due to individual differences 

in WM capabilities. This can account for the higher tendency to pre-update observed for participants 

with higher WM performance in Ness and Meltzer-Asscher (2018a), discussed above. Secondly, the 

threshold may also be adjusted by top-down control, adapting to the degree to which reliance on strong 

prediction is beneficial in a given situation (e.g. due to task demands, noisy input, or predictive validity).  
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Notably, based on this view, pre-updating is not a designated prediction mechanism per-se. Any 

word in a sentence needs to be activated, retrieved and integrated. In order to assume that pre-updating 

exists, we merely need to assume that integration can occur without the need to wait for bottom-up 

activation, namely when top-down activation is strong enough to reach retrieval threshold. Therefore, a 

fundamental implication of such a mechanism is that pre-updating should occur whenever a word is 

activated strongly (and quickly) enough to pass the threshold prior to realization of the next word in the 

input. This prediction of the model is tested in the current study, by combining ERP measurements with 

a speeded cloze task. 

 

1.3) The generation of cloze responses 

The process of cloze response generation was recently addressed in a study by Staub and colleagues 

(2015). In this study, the authors conducted a timed version of the cloze task, in which participants read 

sentence beginnings that were presented word-by-word at a fixed rate, followed by a blank line 

prompting them to complete the sentence out loud as quickly as possible. The authors tested whether 

production onset is influenced by cloze probability, as well as by sentence constraint. The results showed 

that production onsets were correlated with the cloze probability of the produced response, i.e. higher 

cloze (more predictable) words were produced faster. More interestingly, there was also a correlation 

between production onset and sentence constraint. Words with similar (low) cloze probabilities were 

produced faster in sentences with high constraint, namely when the sentence had a strong, very probable, 

alternative completion, than in less constraining sentences. To illustrate, consider sentences (3)-(4) (cloze 

probabilities appear in parentheses)12. Sentence (3) is a high constraint sentence, since it has a very 

probable ending, "popcorn". In contrast, sentence (4) is a low constraint sentence, since it does not 

generate any highly probable completion. Staub et al. (2015) showed that a low cloze completion will be 

produced faster when the sentence is more constraining, e.g. "candy" in (3) will be produced faster than 

"notebook" in (4), all else being equal. 

 

(3) Before the movie even started, the kids started to eat the… 

a. popcorn (75%) 

b. candy (10%) 

(4) In the classroom, Amy opened the cabinet to take out the…   

a. book (25%) 

b. notebook (10%) 

 

These results can be explained if cloze probability distributions do not only reflect the behavior of a 

population, but are also in some way reflected within each individual’s mind. Even those individuals 

who ultimately produce a completion other than the most probable one need to have some form of latent 

representation of the population cloze probability distribution, in order for constraint, namely the 

strength of the most probable completion, to influence the production onset of other completions. 

As argued by Staub et al. (2015), these results rule out two possible accounts for the generation 

of different cloze responses to the same sentence (see also Van Petten & Luka, 2012). First, the variability 

 
12 This example was constructed for explanatory purposes, and the presented cloze probabilities are rough 
estimates.   
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in cloze responses is unlikely to stem (solely) from variability in linguistic experience and real-world 

knowledge across the population (i.e. different individuals, having accumulated different statistics 

through their linguistic input, have different ‘most probable’ completions). Additionally, cloze responses 

cannot be produced by each participant simply sampling once from the cloze probability distribution, as 

suggested by Smith and Levy (2011)13. Such accounts would not predict an influence of the response’s 

probability on its production onset, let alone an influence of the probabilities of alternative responses.  

Instead, Staub and colleagues (2015) demonstrate that an activation 'race' model naturally 

captures the observed results. In this model, multiple possible completions are activated and ‘race’ 

towards a retrieval threshold (a specific level of activation). The cloze response ultimately produced is 

the one that had accumulated sufficient activation and reached this threshold first. Importantly, each 

response has a mean activation rate, i.e. a stable representation of the rate at which this word is activated 

in the context. This rate is presumably driven by the connection strength between the word and the 

context (i.e. how strongly the context promotes the retrieval of that word). The word with the fastest mean 

activation rate would most often win the race, and would thus be the word with the highest cloze 

probability. Nonetheless, the activation rate of each response is somewhat variable, due to random noise 

and idiosyncratic influences. Due to this probabilistic nature of activations, for a given participant in a 

given trial, a response with slower mean activation rate (i.e. a word that is less strongly connected to the 

context) can reach retrieval faster than the response with fastest mean activation rate. However, for this 

to happen in a constraining sentence, when one completion has a very fast mean activation rate (i.e. it is 

a highly probable word, which is strongly connected to the context), the less probable word (with slower 

mean activation rate) must be activated fast enough, in that trial, in order to pass the retrieval threshold 

prior to the more probable word. The model can thus explain why the production onsets observed for 

cloze responses with similar cloze probabilities are shorter in high constraint contexts than in low 

constraint ones. Importantly, this implies that an individual who, in a given trial, produces a low cloze 

response to a high constraint sentence, does not have an entirely different distribution of mean activation 

rates for the possible responses (i.e. they do not have a different distribution of connection strengths), 

compared to individuals who produce the high cloze response. Instead, the production of the low cloze 

response is caused by moment-to-moment variation (i.e. noise) which occasionally lead to exceptionally 

fast activation rate for that low cloze response, allowing it to win the race over the more probable word. 

We note here that we assume that the mean activation rate of a word is driven by the connection strength 

between that word and the context, an assumption not explicitly articulated in Staub et al. (2015). 

Admittedly, connection strengths may not be the only neurally plausible representation for the mean 

activation rates of different words by a given context. However, for clarity of presentation, we use here 

‘connection strengths’ to refer to the stable representation of mean activation rates (which drive cloze 

probability distributions). 

 

1.4) The current study 

The current study is aimed to test the hypothesis that pre-updating is initiated by a noisy activation race 

towards a threshold (see section 1.2), similar to the generation of cloze responses. On this view, pre-

updating should occur whenever a predicted word passes retrieval threshold prior to realization in the 

 
13 This suggestion may not be intended as a description of the actual process taking place in the brain, but 
rather as a computational description of the task (as also noted by Staub et al., 2015). 
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input. As discussed above, the results of Staub and colleagues (2015), indicate that when a speaker 

produces a low cloze word as the first completion that comes to mind for a high constraint sentence, this 

word has to have been activated fast despite its low cloze probability. Therefore, if pre-updating is indeed 

initiated by an activation threshold, then when a participant produces a low cloze word as a cloze 

response to a high constraint sentence, this word should have also been pre-updated, due to its strong 

activation at that moment and despite its low cloze probability. 

Crucially, the results of Staub et al. (2015) also indicate that the distributions of connection 

strengths (i.e. mean activation rates for the possible completions for a sentence), which underlie cloze 

probability distributions, are in some way represented within each individual’s mind (otherwise the cloze 

probability of an unproduced response cannot influence the production onset of another response). 

Despite this, a low cloze word is sometimes produced for a high constraint sentence, showing that 

activations sometimes diverge from these connection strengths. Thus, activations at a given moment 

provide a less reliable measure of the actual likelihood of a word to be the continuation of a sentence, 

compared to connection strengths. Notably, in the speeded cloze task, the participant’s goal is to produce 

a completion as quickly as possible, and there is no ‘correct’ response. In such a task it is therefore 

reasonable that (possibly noisy) activations should be “good enough” to rely on, and a low cloze word 

will be produced as a cloze response to a high constraint sentence if it is more activated at that moment, 

making it easier to retrieve. This raises the question of whether the underlying information regarding the 

actual likelihood of a word to appear given a context (represented in connection strength) can be accessed 

in other tasks and by other processes, and whether this information (rather than noisy activations) is relied 

on in processes for which an accurate estimation of a word’s likelihood to appear is more crucial. 

As detailed above, pre-updating is a strong form of prediction, hypothesized to incur processing 

costs if disconfirmed. Therefore, the pre-updating mechanism should be triggered only by a prediction 

that has a high likelihood of success. The decision of whether to pre-update is thus fundamentally 

different from the decision of which word to produce in the cloze task: while there is no penalty for 

producing a low cloze completion in the cloze task, pre-updating an improbable word would often result 

in processing costs, since this prediction is highly likely to be disconfirmed. Since connection strength 

is a reliable measure of the likelihood of the prediction to be correct, rationally, pre-updating could be 

triggered based directly on the connection strength between the predicted word and the context, if this 

information is accessible, rather than based on noisy activations (even if cloze response generation is 

based on the latter). If this was the case, then when the activation of a low cloze word is stronger than the 

activation of a high cloze alternative, the low cloze word would be produced as a cloze response, without 

having been pre-updated prior to production. This is so since the participant’s strongest prediction at that 

moment in time (the most activated word) was an improbable word (with relatively weak connection 

strength to the context) and it therefore did not trigger pre-updating. On this view, then, cloze response 

generation and pre-updating are based on different information types, due to their different nature. Our 

hypothesis, namely that pre-updating, like cloze response generation, is initiated by a race towards an 

activation threshold, states that this is not the case. Namely, it suggests that although our brain does have, 

in some form, a representation of the  distribution of connection strengths (which is a more reliable 

measure of a word's likelihood to appear), this information cannot be (or is not) accessed directly, without 

the mitigation of noisy activations, even in a decision that might incur failure costs, i.e. pre-updating. 

The current experiment was therefore designed to examine the prediction processes that take 

place prior to when a participant provides a low cloze word (e.g. 'candy') as a continuation for a high 
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constraint sentence (e.g. 'Before the movie even started, the kids started to eat the…'). Specifically, we 

hypothesized that the P600 pre-updating effect would occur in high- relative to low-constraint sentences, 

not only when the participant predicts the high cloze word, but also when a low cloze word is predicted 

in the high constraint context. This would indicate, as explained above, that pre-updating is initiated by 

an activation race toward a threshold, similar to the generation of cloze responses. 

To test this, the current experiment employed a speeded cloze task (Staub et al., 2015), but 

crucially accompanied by ERP measurement enabling us to target the prediction processes that precede 

production. Participants read sentence beginnings, ranging in constraint, and had to provide a completion 

out loud as quickly as possible when prompted by the appearance of a blank line. ERPs were measured 

on the verb where the prediction could be generated, prior to the production prompt. An additional word, 

the Hebrew accusative case marker ‘et’, was presented between the verb and the production prompt, to 

ensure that production does not contaminate the ERP (see Materials section). This design allowed us to 

analyze the electrophysiological data based on the participant’s cloze response, reflecting their strongest 

prediction at that moment in time.  

If pre-updating is indeed initiated by an activation threshold, the prediction processes when a 

low cloze word is produced in a high constraint sentences should be on a par with those that take place 

when a high cloze word is produced in these contexts, i.e. this is an instance of strong prediction, despite 

the low probability of the predicted word. Therefore, pre-updating should occur, resulting in an increased 

P600 where the prediction is generated, similar to that obtained for high cloze completions of high 

constraint sentences.  

The current design also allowed us to replicate the behavioral results observed by Staub et al. 

(2015), looking at production onsets of cloze responses. We additionally administered a reading span test 

to assess participants’ WM performance in order to replicate the correlation between the P600 pre-

updating effect and WM performance, observed in Ness & Meltzer-Asscher (2018b).  

 

2) Methods 

2.1) Participants 

Participants were 48 Tel-Aviv University students (14 males), all native Hebrew speakers, with an 

average age of 24.85 (range: 18-39). Participants were given course credit or were paid 80 NIS (~22$) for 

their participation. The experiment was approved by the Ethics Committee in Tel Aviv University. 

 

2.2) Materials 

The materials consisted of 156 Hebrew sentences, varying in constraint. The sentences were composed 

in pairs such that each pair included a high constraint sentence and a low constraint sentence (based on a 

cloze probability questionnaire, as detailed below). See Table 1 for example sentences. The critical word 

for the ERP analysis was the verb (marked in bold in Table 1), which was identical for the two sentences 

in each pair. The verb was always followed by the Hebrew accusative case marker (‘et’, an orthographic 

word), which was then followed by a blank line prompting participants to produce a completion. The 

Hebrew accusative case marker therefore served to distance the verb from the production prompt, to 

ensure that production does not contaminate the ERP. The full list of materials is provided at: 

https://osf.io/vjwds/?view_only=6758ee1a8b3f4e2b993b48a36cbb8afc.  

 

https://osf.io/vjwds/?view_only=6758ee1a8b3f4e2b993b48a36cbb8afc
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Table 1: Example sentences 

Constraint Sentence frame 

High 

 

biglal še-ofir    lo   makir et    ha-sifria,    ha-safranit    azra      lo    limco     et    __ 

since that-Ofir not know ACC the-library, the-librarian helped him to-find ACC __ 

‘Since Ofir isn’t familiar with the library, the librarian helped him find __’ 

 

Low 

ofir xipes         ve-xipes          bemešex šaot,   aval lo    ecliax          limco    et    __ 

ofir searched and-searched for           hours, but  not succeeded to-find ACC  __ 

‘Ofir had searched for hours, but he couldn’t find __’ 

 
 

In order to prevent participants from anticipating when they will be prompted to produce a cloze 

response, the sentence fragments varied substantially in length, with the number of words prior to the 

critical verb ranging from two to fifteen. In addition, some of the sentences included additional verbs 

and accusative case markers after which the sentence continued, and the production prompt was not yet 

presented. The number of words prior to the verb did not differ between the high and low constraint 

sentences (High: M = 7.2, SD = 2.4; Low: M = 7.2, SD = 2.5; p = .794), nor did the length or frequency 

of the word prior to the verb (length – High: M = 4.3, SD = 1.9; Low: M = 4.4., SD = 1.4; p = .874; 

frequency – High: M = 1027.5, SD = 2565.6; Low: M = 1277.3, SD = 3500.8; p = .612). Presentation order 

was randomized for each participant. Sentences from the same pair (which contained the same verb) were 

separated by at least 50 trials, with the order of presentation counterbalanced between conditions. 

Cloze probability questionnaires: cloze probability questionnaires were conducted on two versions of 

each sentence – truncated prior to the verb, and truncated following the verb. This was done to assess the 

cloze probability of the verb, which is the critical word for the ERP analysis, and to assess the constraint 

of each sentence (after the verb). Each sentence fragment was presented to at least 30 participants 

(different from those participating in the ERP experiment). Participants were instructed to complete each 

sentence with the first completion that comes to mind. Several questionnaires were conducted, but no 

two versions of the same sentence nor two sentences from the same pair were presented to the same 

participant. The order of the sentences was randomized for each participant.  

Based on the results of these questionnaires, the experimental materials were constructed such that 

the cloze probability of the critical verb was very low in both high and low constraint sentences, and did 

not differ significantly between the conditions (High: M = 5.8%, SD = 15.7; Low: M = 3.2%, SD = 8.7; 

p = .093). The average constraint following the verb (i.e. the constraint calculated based on cloze 

responses generated when the presented sentence fragment included the verb) was 78.9% in the high 

constraint sentences (range: 50%-100%), and 26.7% in the low constraint sentences (range: 0-50%).  

 

2.3) Procedure 

Stimuli were presented using the E-prime 2.0 software (Psychology Software Tools, Pittsburgh, PA). 

Each trial was preceded by a 1000ms fixation cross. Sentences were presented word-by-word in the 

middle of the screen for 250ms, with a 350ms ISI. Following the sentence fragment, a blank line prompted 

participants to produce a completion. Participants were instructed to produce a completion out loud as 
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quickly as possible once the blank line appears. The blank line was presented until the participant 

finished producing a completion and pressed a button to continue, or for up to 5 seconds (i.e. if the 

participant did not produce a completion within 5 seconds, the trial was terminated). After each trial, a 

string of number signs (####) appeared on the screen and the participant pressed a button when they were 

ready to start the next trial. Participants were encouraged to take as many breaks as needed. Prior to the 

experiment, participants completed a practice block of five trials. The experimental session (including 

EEG set-up) took 60-90 minutes. 

Reading span test: To assess WM performance, each participant completed a reading span test. The test 

was performed after the main experiment. The test’s procedure was based on Daneman and Carpenter 

(1980), with minor differences. Participants read aloud series of Hebrew sentences, after which they had 

to recall the last word of each sentence. The number of sentences in the series increased from two to six. 

Participants had three series in each level, and the last level at which a participant correctly recalled all 

words in at least two series was defined as this participant’s reading span (i.e., when the participant failed 

to recall a word in two series of the same level, the test was terminated and the participant’s reading span 

was set at the preceding level). Two practice series (at the two-sentence level) were performed prior to 

the test, in which participants could make mistakes and ask questions. 

 

2.4) EEG recording and pre-processing 

The electroencephalogram (EEG) data were recorded using a BrainVision actiCap system with 32 

Ag/AgCl scalp electrodes attached according to the 10-20 system. Two electrodes were used to monitor 

EOG, located at the infraorbital ridge and the outer canthus of the right and left eyes respectively. 

Electrode impedances were kept below 5 kΩ for all scalp electrodes and below 15Ω for the EOG 

electrodes. During recording, the EEG was referenced to Fp2. The EEG was then re-referenced offline 

to the average of the left and right mastoid electrodes. Data were collected at a 250 Hz sampling rate and 

low-pass filtered at 70 Hz. Data were then bandpass-filtered between 0.1 and 30 Hz, and segmented into 

1200 ms epochs, including -200 to 1000 ms relative to the onset of the critical word. The 200 ms prior to 

the onset of the critical word were used for baseline correction. Trials contaminated by blinks, eye 

movements, excessive muscle activity or amplifier blocking were rejected off-line before averaging and 

excluded from further analysis (this affected 4.78% of the trials). 

2.5) EEG data analysis 

Based on the typical time-window of the P600 component, mean amplitudes over the 500-800ms time-

window were analyzed. Electrodes were grouped based on their anteriority and laterality (Anterior - Left: 

F7, F3, Fp1, FC5, FC7, T1, C3; Middle: Fz, Cz; Right: F8, F4, Fp2, FC2, FC6, T7, C4; Posterior - Left: 

P7, P3, O1, CP5, CP1; Middle: Pz, Oz; Right: P8, P4, O2, CP2, CP6) in order to reduce the number of 

comparisons and the familywise error rate (see Luck, 2014) while still allowing to assess the topography 

of the effects. High constraint trials were divided based on the produced word, forming three conditions: 

HH (High constraint, High cloze word produced), HL (High constraint, Low cloze word produced), L 

(Low constraint). This resulted in a repeated-measures ANOVA with the factors Anteriority (Anterior, 

Posterior), Laterality (Left, Middle, Right), and Condition (HH, HL, L). The Huyhn-Feldt adjustment for 

nonsphericity of variance was applied when the sphericity assumption was violated. In these cases, the 

corrected p-value is reported with the original degrees of freedom. 

 

2.6) Audio recordings – transcription, onset measurement and data analysis 
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Production onset was marked using DeepWDM, a recurrent neural network for word duration 

measurement (Goldrick et al., 2018). A coder then listened to each of the recordings, transcribed the 

production, and corrected the marked onset when needed (17.75% of the trials). Trials with speech errors, 

repairs or filled pauses were excluded (1.7% exclusion). Singular/plural and masculine/feminine forms 

of the same noun were collapsed by coding each noun as its singular-masculine form (e.g. ‘shirts’ and 

‘shirt’ where counted as the same response). When the produced response consisted of more than one 

word, only the first word was coded unless the words formed a compound. Since the presented sentence 

fragments always ended with the Hebrew accusative case marker ‘et’, which only precedes definite 

nouns, the vast majority of produced responses began with a definite determiner (‘the’ - ha). Responses 

that included other determiners (e.g. kol ha-kelim – ‘all the-tools’) were coded without the determiner 

(such responses were very rare). 

Production onsets were analyzed with linear mixed-effects models. Constraint and cloze 

probability were treated as continuous variables. Analyses were conducted using the lmerTest package 

(Kuznetsova, Brockhoff, & Christensen, 2014) in the R software environment (R Development Core 

Team, 2011). Data were winsorized by replacing data points exceeding 2.5 standard deviations (SD) from 

each participant’s mean with the value of 2.5 SDs from that participant’s mean (affecting 4.0% of the 

data). All models initially included the maximal random effects structure for subjects (i.e. intercept and 

slopes of all fixed effects and interactions). The random effects structure was reduced when necessary in 

order to achieve convergence (the reduced models are specified in the Results section), by iteratively 

removing the random slope associated with the smallest variance (Barr et al., 2013). Random effects for 

items were not included since they could not be estimated independently of the fixed effects, as each 

item occurred at only one level of Constraint (as was done in Staub et al., 2015). 

 

3) Results 

The data are provided at: https://osf.io/vjwds/?view_only=6758ee1a8b3f4e2b993b48a36cbb8afc.  

 

3.1) Behavioral results 

To analyze production latencies, we followed the analysis reported in Staub et al. (2015). The full results 

of the analyses are reported in Table 2. We first fitted a model that included cloze probability as the only 

fixed effect. Higher cloze probabilities led to shortened production onsets (p < .001). We then fitted a 

second model, which included constraint as a fixed factor, as well as a factor indicating whether or not 

the produced word was the modal response, namely the most probable response for that item. A 

significant effect of constraint was found (p < .001), such that higher constraint led to shortened 

production onsets. Additionally, modal responses were produced significantly faster than non-modal 

responses (p < .001), indicating that the effect of cloze probability in Model 1 cannot be solely driven by 

constraint, as constraint was accounted for in Model 2 (see Figure 2a). We then fitted a third model, which 

included cloze probability and constraint as fixed factors, and only included responses with cloze 

probability <.4 (which constituted 55.9% of the data), allowing to separate constraint and cloze 

probability.14 In order to achieve convergence, all random slopes had to be removed from this model. 

 
14 For responses with cloze probability of .5 or higher, cloze probability and constraint are perfectly correlated 
(the constraint is always the cloze probability of the produced word in these trials). Similar to Staub et al. (2015), 
we had very few responses with cloze probability between .4 and .5 that were not the modal response (when 

https://osf.io/vjwds/?view_only=6758ee1a8b3f4e2b993b48a36cbb8afc
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Significant effects of both cloze probability and constraint were found (p < .001 for both effects), 

confirming that the production of low cloze completions is indeed influenced by sentence constraint in 

addition to cloze (See Figure 2b). 

The behavioral results thus replicated the findings of Staub and colleagues (2015), indicating that 

words with higher cloze probabilities are produced faster, and that words with similar cloze probabilities 

are produced faster when the sentence constraint is higher.  

 

Table 2: Mixed-effects regression models coefficients for production onsets  

 Estimate SE df t value p value 

Model 1 
Cloze probability -0.236 0.016 46.86 -14.35 < .001 

Model 2 
Constraint -0.176 0.015 46.43 -11.89 < .001 
Modal -0.201 0.021 43.52 -9.77 < .001 
Constraint : Modal 0.049 0.021 48.75 2.36 .022 

Model 3 
Cloze probability -0.170 0.011 7332 -15.80 < .001 
Constraint -0.136  0.012 7330 -11.38 < .001 
Cloze probability : Constraint 0.004 0.015 7326 0.33 .741 

 

 
Figure 2. (A) Mean onset time for modal and non-modal responses, in sentences with high (>0.5) and low 
(<=0.5) constraint. (B) Mean onset time by cloze probability, in sentences with high (>0.5) and low (<=0.5) 
constraint. Error bars represent standard error of the mean. 
 

3.2) EEG results 

High constraint trials were divided based on the produced word, forming three conditions: HH (High 

constraint, High cloze word produced; this condition included 2759 trials overall, after exclusions), HL 

(High constraint, Low cloze word produced, 947 trials), L (Low constraint, 3670 trials). Mean amplitudes 

over the 500-800ms time-window relative to the onset of the verb were entered into a repeated-measures 

ANOVA with the factors Anteriority (Anterior, Posterior), Laterality (Left, Middle, Right), and 

Condition (HH, HL, L). Grand averaged ERPs and scalp distributions of the effects are displayed in 

Figure 3. The full ANOVA results are provided in Table 3. 

 
the modal response is produced, constraint is again equal to cloze probability), and therefore decided to include 
only responses with cloze probability < .4 in this model (as in Staub et al. 2015). 
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500-800ms time window: The results showed a significant effect of Condition (p < .001). Additionally, a 

significant interaction was found between Anteriority and Condition (p = .001), such that the effect of 

Condition was greater in posterior electrodes, consistent with the common topography of the P600 

component. Pairwise comparisons indicated greater positivity in the HH condition relative to the L 

condition (F (1,47) = 17.331, p < .001), as well as greater positivity in the HL condition relative to L (F 

(1,47) = 20.206, p < .001). The HH and HL conditions did not differ significantly (F (1,47) = 0.037, p =.848). 

These results indicate a P600 effect in the two high constraint conditions – namely whether the produced 

response was the high cloze response or a low cloze one – relative to the low constraint condition.  

 

 
 

 

500-800ms 

HH - L 

500-800ms 

HL - L 

-2µ  2µ 0 
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Figure 3. Grand averaged ERPs and scalp distributions of the P600 effects (500-800ms relative to the verb 
onset). HH = High constraint, High cloze word produced; HL = High constraint, Low cloze word 
produced; L = Low constraint. 

 
Table 3: ANOVA results for ERP data 

 df F value p value 

P600 

Condition 2,94 10.63 < .001 
Anteriority 1,47 96.05 < .001 
Laterality 2,94 22.12 < .001 
Condition : Anteriority 2,94 7.52 .001 
Condition : Laterality 4,188 8.19 < .001 
Anteriority : Laterality 2,94 3.58 .041 
Condition : Anteriority : Laterality 4,188 0.55 .661 

N400 

Condition 2,94 9.99 < .001 
Anteriority 1,47 33.05 < .001 
Laterality 2,94 9.46 < .001 
Condition : Anteriority 2,94 4.11 .020 
Condition : Laterality 4,188 3.21 .023 
Anteriority : Laterality 2,94 0.33 .707 
Condition : Anteriority : Laterality 4,188 0.41 .750 

 

Additionally, a by-trial correlation was found between P600 amplitude (i.e. mean amplitude over 500-

800ms relative to verb onset) and production onset, such that faster productions occurred in trials with 

larger P600 amplitudes at the preceding verb (Pearson correlation = -.048, N = 7022, p < .001. See figure 

4). Finally, a by-participant correlation was found between the P600 effect (i.e. the mean difference in 

amplitude between the high and low constraint sentences, 500-800ms relative to verb onset) and reading 

span (Pearson correlation = 0.295, N = 48, p = .042. See Figure 5), replicating previous results (Ness & 

Meltzer-Asscher, 2018b). 

 

 

Figure 4. By-trial correlation between P600 amplitude (i.e. mean amplitude over 500-800ms relative to 
verb onset) and production onset. 

 

R = - .048, p < .001 
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Figure 5. By-participant correlation between the P600 effect and reading span. The P600 effect was 
defined as the mean difference in amplitude between high and low constraint trials in the 500-800ms time 
window relative to verb onset. ○ – single participant, ♦ - average across reading span score. 
 

300-500ms time window: Visual inspection of the ERPs suggested a difference between the conditions 

in this time window, typical of the N400 component. We therefore chose to conduct and report this 

analysis for completeness (see Discussion for interpretation of these results). The analysis showed a 

significant effect of Condition (p < .001). Additionally, a significant interaction was found between 

Anteriority and Condition (p = .020), such that the effect of Condition was greater in posterior electrodes, 

consistent with the common topography of the N400 component. Pairwise comparisons indicated greater 

negativity in the L condition relative to the HH condition (F (1,47) = 15.533, p < .001), as well as greater 

negativity in the L condition relative to the HL condition (F (1,47) = 15.389, p < .001). The HH and HL 

conditions did not differ significantly (F (1,47) = 0.121, p =.730). These results indicate an N400 effect in 

the low constraint condition relative to the two high constraint conditions.  

 

3.3) Reliability of cloze data 

Since we had cloze responses on the same 156 sentences from two datasets – the main experiment (a 

speeded cloze task) and the pre-test (an offline cloze questionnaire), we also carried out an analysis to 

assess the reliability of cloze data and the influence of the procedure (i.e. speeded vs. offline) on the data. 

Overall, responses were extremely similar in both datasets. The modal response to the high constraint 

sentences differed between the two datasets only in one item, and in this item the constraint was relatively 

close to 50% and the words that alternated were highly related near-synonyms (ha-metupal –  ‘the 

patient’, and ha-xole – ‘the sick person’). The overall average constraint was also very close in the two 

datasets (52.83% in the pre-test, 52.72% in the main experiment) and the by-item correlation between 

sentence constraint calculated in each dataset was very high (N = 156; r = 0.90, p < .001). 

 

4) Discussion 

The current study investigated what triggers the pre-updating mechanism. We hypothesized that pre-

updating is triggered by an activation race toward a retrieval threshold. This means that similarly to the 

decision which cloze completion to produce, the decision of whether to pre-update would be noisy rather 

than based directly on the strength of the connection between the predicted word and the context, leading 

to occasional pre-updating of improbable (low cloze probability) words, despite their high likelihood of 

being contradicted by the upcoming input. 
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Looking at the processes involved in the prediction of a low cloze word in a high constraint 

context, we asked whether the P600 pre-updating effect would occur in high- relative to low-constraint 

sentences, not only when the participant predicts the high cloze word, but also when they predict a low 

cloze word. In such cases the participant’s strongest prediction, reflected in their cloze response, differs 

from the population’s most predictable (most probable) word. 

Participants completed sentences ranging in constraint, and ERPs were measured on the verb 

where the prediction can be generated, prior to when the participants were prompted to produce a 

completion. The behavioral results indicated unique contributions of both cloze probability and sentence 

constraint to the production onset of cloze responses. Higher cloze probability reduced production onset 

times above and beyond sentence constraint, and vice versa. These results replicate the results of Staub 

and colleagues (2015) in a different language and with a different set of materials.  

The ERP results showed an increased P600 amplitude at the verb in high constraint sentences 

relative to low constraint ones. This effect replicates the results of Ness & Meltzer-Asscher (2018a). As 

discussed in the Introduction, this effect was suggested to reflect pre-updating, indicating increased 

integration costs when integration at the verb includes not only the verb itself, but also the predicted noun 

(in high constraint sentences). Notably, the participants’ task in the current study was sentence 

completion. However, we believe the observed ERP effects are unlikely to be related to production. First, 

the P600 effect in the current study resembles in timing and topography to the P600 effect in the previous 

study (Ness & Meltzer-Asscher, 2018a), which did not involve production, but merely reading for 

comprehension. More importantly, the materials in the current study were constructed to ensure that 

production does not contaminate the ERPs elicited by the critical verb. This was done by having the 

Hebrew accusative case marker (‘et’) presented between the verb and the production prompt, distancing 

the verb from production onset, as well as by varying the sentence fragments' length (the number of 

words prior to the critical verb), and including additional verbs and accusative case markers after which 

the sentence continued and the production prompt was not yet presented (see Materials section), thus 

preventing participants from anticipating the presentation of the production prompt. Thus, production 

preparation was unlikely to have taken place at the critical verb. 

The novel and crucial finding in the current study was that increased P600 amplitude at the verb 

in high constraint (relative to low constraint) sentences was observed even in trials in which a low cloze 

word was produced. This result provides evidence that pre-updating of a predicted word occurred in high 

constraint sentences, regardless of whether the produced cloze response (i.e. the participant’s strongest 

prediction at that moment in time) was a high or low cloze response.  

The results also replicate the correlation between the size of the P600 pre-updating effect at the 

verb and the participant’s WM performance, such that participants with higher reading span scores 

showed a greater effect (Ness & Meltzer-Asscher, 2018a). This suggests that better WM capabilities allow 

for a greater tendency to pre-update, supporting the involvement of WM representations in this process. 

Additionally, the results showed a reduction in N400 amplitude in the high constraint sentences relative 

to the low constraint sentences. Since we did not have any hypothesis regarding the N400 component, 

the analysis of the N400 time window was not planned and should be regarded as exploratory. We believe 

that the reduction in the N400 amplitude in the high relative to the low constraint sentences is likely due 

to the difference in the verb’s cloze probability. Although we attempted to control for verb cloze 

probability (see Materials section), the verb’s cloze probability in the high constraint sentences was 

slightly higher than in the low constraint sentences (5.8% vs. 3.2%). The cloze probabilities of the verbs 
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in all of the materials was low, which may explain why the small difference in cloze probability 

manifested in the ERP results: small differences in the lower range of the cloze probability scale are 

known to have relatively large effects on processing difficulty (e.g. Smith & Levy, 2013). Importantly, 

however, there is no ground to assume that it is this difference in the verb’s cloze probability which 

caused the P600 effect. First, countless studies manipulating cloze probability have not resulted in P600 

effects attributed to cloze probability (e.g. Delong, Urbach & Kutas, 2005; Kutas & Hillyard, 1984; 

Wlotko & Federmeier, 2012). Secondly, the direction of the P600 effect is such that the amplitude is higher 

in the high constraint sentences (by hypothesis due to pre-updating the upcoming noun). However, the 

verb’s cloze probability in these sentences was higher, not lower. If anything, we would expect the 

integration of a more predictable verb to be facilitated. Assuming that the P600 reflects integration costs, 

an increased P600 due to a more predictable verb is highly unlikely, pointing to the conclusion that the 

P600 here indexes integration costs of the predicted, rather than the current, word. An additional 

affirmation that the effect in the N400 time window and the effect in the P600 time window are not driven 

by the same cause is that while the P600 effect was correlated with participants’ reading span scores, the 

N400 effect was not (Pearson correlation = 0.126, N = 48, p = .392). 

 

4.1) Pre-updating and a threshold mechanism  

As explained in the Introduction, pre-updating is the integration of a predicted word into the sentence 

representation being built online in WM. Since WM is limited, it is unlikely that many competing 

predictions can simultaneously be pre-updated. Additionally, the disconfirmation of a pre-updated 

prediction was suggested to incur additional processing costs beyond what is needed when pre-updating 

did not take place, since the integrated (i.e. pre-updated) prediction has to be inhibited in order to enable 

integration of the unexpected word that appeared in the actual input (Ness & Meltzer-Asscher, 2018b). 

Rationally, pre-updating should therefore only be initiated when a prediction has a high probability to 

be correct.  

In Ness & Meltzer-Asscher (2018a), a threshold mechanism was postulated as the trigger for pre-

updating. Under this view, multiple predictions are pre-activated, but in most cases such activations are 

not enough for any word to be retrieved (and integrated). Only once bottom-up activation is added (i.e. 

the word appears in the input), the retrieval threshold is reached and the word can be integrated into the 

sentence’s WM representation. However, if a certain word is strongly activated, for example in a highly 

constraining sentence, pre-activation can be sufficient for the word to reach the retrieval threshold prior 

to its realization in the input. This predicted word is then integrated into the sentence’s WM 

representation, i.e. pre-updating occurs. If this is indeed the mechanism that initiates pre-updating, then 

pre-updating should occur whenever a word passes retrieval threshold prior to realization in the input. 

This means that whether or not an activated word is pre-updated should not directly depend on its cloze 

probability, but rather on how strongly it is activated within the participant’s mind at a specific moment 

in time.  

The results of Staub and colleagues (2015) indicate that when a participant produces a low cloze 

word as a completion for a high constraint sentence in the (speeded) cloze task, this word has to have 

been highly activated despite its low cloze probability. Therefore, our hypothesis in the current study 

was that if indeed an activation race towards a threshold is what triggers pre-updating, then pre-updating 

should occur in high constraint sentences regardless of the cloze probability of the word predicted and 

produced by the participant at that specific moment in time. Our results are in line with this prediction, 
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as the P600 pre-updating effect was observed in high constraint sentences prior to both high- and low-

cloze completions.   

Interestingly, this is a seemingly faulty mechanism for the initiation of pre-updating. As 

discussed in the Introduction, the results of Staub et al. (2015) indicate that the distribution of connection 

strengths which underlie cloze probability distributions is in some way represented within each 

individual’s mind (i.e. an individual who, in a given trial, produces a low cloze response to a high 

constraint sentence, does not have an entirely different distribution of connection strengths compared to 

individuals who produce the modal response). Therefore, a ‘better’ mechanism would take into account 

that pre-updating, unlike cloze response generation, is "risky", and would initiate pre-updating directly 

based on the connection strength of the predicted word, which provides a more reliable measure for its 

likelihood to appear in the sentence, rather than on noisy activations. Such a mechanism would entail 

that when a participant produces a low cloze word as a speeded cloze response to a high constraint 

sentence, i.e. when activation levels diverge from the cloze probability distribution and a low cloze word 

is activated more strongly than a high cloze alternative, pre-updating would not occur. Our results show 

that this is not the case, thus supporting a seemingly maladjusted mechanism for the initiation of pre-

updating by an activation race towards a threshold, rather than by direct access to the information 

represented by connection strengths. 

The by-trial correlation found between P600 amplitude (at the verb) and production onset of the 

cloze response supports our main finding by providing additional indication that pre-updating occurs 

when a predicted word passes retrieval threshold fast enough. We note, however, that although this 

correlation was statistically significant, it was very small and should therefore not be taken as a strong 

evidence. 

 

4.2) The representation of cloze probably distributions  

In the current study, we make the distinction between the predictability of a word given a sentence at two 

levels of representation: i) the strength of connection between the word and the context, which we believe 

reflects the participant’s relatively stable estimate of the likelihood of a word to appear given the context; 

and ii) the strength of activation of the word at a given moment (following the context), which we believe 

reflects the participant’s less accurate (but more accessible) approximation for the likelihood of a word 

to appear. However, in the psycholinguistic literature, the predictability of a word given a context is most 

often operationalized by the measure of cloze probability. This raises the question of the relationship 

between cloze probability, connection strengths and activation levels (for a similar discussion of the 

relation between cloze probability and predictability see Staub et al., 2015). In order to understand this 

relationship, we need to consider how cloze probability is measured. Cloze probability data are collected 

in the cloze task, by a population of participants producing cloze responses; each of these responses is 

the result of an activation race within a participant’s mind, which is in turn driven by the participant’s 

representation of connection strengths between the context and the potential responses (driving mean 

activation rates). Thus, each response represents the most activated word for a participant at a specific 

moment in time. Although activations are influenced by noise, on average (across participants) the 

stronger a word’s connection to the context is, the faster its mean activation rate would be, resulting in a 

higher cloze probability. This may seemingly suggest that cloze probability is equivalent to connection 

strength. However, as pointed out by an anonymous reviewer, since cloze probability values are 

equivalent to "win percentages" in the race toward retrieval in the cloze task, the cloze probability of a 
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word is not purely a reflection of the word’s "strength" in the race. Instead, it is also influenced by who 

the other competitors are. For example, a word with a 10% cloze probability that wins over a very strong 

competitor 10% of the times in some sentence, is stronger than a 10% cloze probability word that wins 

over weak competitors 10% of the times in some other sentence. Therefore, when we measure cloze 

probabilities, we do not directly measure the connection strength between a word and a context (driving 

the word’s mean activation rate). Rather, we measure a value that is correlated with this representation, 

but is also affected by the alternative predictions for the sentence (i.e. the other words which compete in 

the same race).  

Importantly, this view of the mental representation of cloze probability distributions does not 

alter our main conclusion, that pre-updating is initiated based on noisy activations rather than the more 

stable and reliable representation of connection strengths. For example, let us consider a high (70%) 

constraint trial in which a 10% cloze probability word is produced, and a low (30%) constraint trial in 

which a 10% cloze probability word is produced. Admittedly, although the cloze probability of the 

produced word in both trials is 10%, the connection strengths in the participants’ mind likely reflects 

stronger association between the word and the preceding context for the 10% word in the high constraint 

sentence relative to the 10% word in the low constraint sentence, or their win percentages would not be 

the same. However, this ‘stronger’ 10% cloze probability word (in the high constraint sentence) is still 

not ‘strong’, in absolute terms; it is somewhat stronger than the 10% cloze probability word in the low 

constraint sentence, but it is still much weaker than its high cloze probability competitor. Additionally, 

the representation of possible completions for the high constraint sentence includes the fact that there is 

a much stronger alternative (the 70% cloze probability word), than the produced 10% cloze probability 

word. If the pre-updating mechanism were initiated based on representation of connection strengths, then 

in the high constraint trial, despite the high activation level of the 10% cloze probability word, this word 

would not be pre-updated since there is indication that this prediction is improbable (much less probable 

than its high cloze alternative), and is unlikely to be correct. Instead, the current results indicate that when 

a low cloze word is highly activated (i.e. when it wins over a high cloze alternative and is produced in 

the cloze task as a completion for a high constraint context), it is pre-updated.  

 

4.3) Is noisy better, good enough, or inevitable?  

As explained above, the current results indicate that pre-updating is triggered by a noisy activation race 

rather than directly by connection strength, despite the fact that connection strength would be a better 

measure of the likelihood of a prediction to be correct. Pre-updating being driven by noisy activations is 

what gives rise to the phenomenon observed in the current study, i.e. that an improbable word can be 

pre-updated. The question then arises, why would pre-updating not be driven directly by the information 

contained in connections strength, avoiding the occasional pre-updating of an improbable prediction?  

We propose three possible explanations for this puzzle. First, it is possible that due to biological 

properties of our brain, it may not be possible for a cognitive process to be directly informed by 

connection strengths. Hence, noisy activations are used simply since they are the best approximation 

available, given that the information contained in connection strengths cannot be accessed in a more 

reliable way. Secondly, even if a cognitive process can in principle directly access information contained 

in connection strengths, eliminating the addition of noise may require more effort (e.g. inhibiting noise 

sources) or more time. This would mean that noisy activations are used because they are “good-enough” 

–  they may provide a sufficiently good approximation of cloze probability so that it would not be 



79 
 

beneficial to exert additional efforts only to avoid the occasional cases in which a low cloze word is 

inadvertently pre-updated (i.e. the effort needed to access the more accurate information may outweigh 

the costs incurred by the disconfirmation of these pre-updates). A third, perhaps more interesting, 

explanation may be that noise is not an architectural flaw, but an advantage. In recent years, numerous 

studies have demonstrated that noise (both endogenous and exogenous) can be beneficial to neural 

processing. The benefits of an adequate amount of noise were shown in experiments ranging from single 

cell recordings to human behavior (for reviews see Guo, Perc, Liu, & Yao, 2018; McDonnell & Ward, 

2011; Moss, Ward, & Sannita, 2004). For example, noise was shown to improve performance in 

perception, learning and decision making (e.g. Gureckis & Love, 2009; Kitajo et al., 2003; van der Groen 

& Wenderoth, 2016). Low endogenous neural noise was even suggested to cause the behavioral features 

of autism spectrum disorder (Davis & Plaisted-Grant, 2015). 

Admittedly, a certain amount of noise is likely inevitable in any cognitive process. However, 

noise levels can be regulated, and can differ between systems (see Moss, Ward, & Sannita, 2004 for a 

discussion of noise regulation). This means that noise levels in a given cognitive mechanism can be 

optimized. Notably, in the case of the race mechanism discussed in the current study, noise levels seem 

quite significant. For example, let us consider a sentence that, based on accumulated language exposure, 

has a continuation with 70% probability of appearing, and alternative continuations with 20% and 10% 

probabilities. In a system with no noise at all, the word that has a 70% probability would be predicted and 

produced as a cloze response by any participant at any moment in time, since without noise this word 

would always be the most activated and would always be retrieved. As opposed to this scenario, in the 

cloze task we see that the modal response for such a sentence ‘loses the race’ 30% of the time, ergo, noise 

influences the final result of the race to a non-negligible degree. This may hint that noise is not merely 

inevitable in this system, but it has an objective. For example, if the confirmation and/or disconfirmation 

of pre-updated predictions triggers learning, noise can enhance the precision of the learned cloze 

probability distribution, strengthening the discrimination in the lower end of the distribution (i.e. the 

system would be better at learning that word X has a 20% probability and word Y has a 10% probability). 

The specific objectives of the noise in this system remains to be studied. One avenue to study this may 

be to look at the consequences of individual differences in the noise level in this system, which may be 

measured by the proportion of the trials in which a certain individual provides a low cloze response to a 

high constraint sentence (i.e. more noise in this system should lead a participant to provide modal 

responses less often).  

 

4.4) Cloze probability and differential noise levels 

Staub and colleagues (2015) suggested a computational implementation of the race model for generating 

cloze responses. In this model, each possible cloze response accumulates activation at a certain rate, and 

the finishing time for a cloze response is the time it takes for the activation of this response to reach 

retrieval threshold. In each cloze trial, a finishing time for each possible response is drawn from the 

finishing time distribution of that response, and the response with the shortest finishing time is produced. 

This means that the cloze probability of a certain response is the proportion of trials in which it had the 

shortest finishing time. The finishing time distributions of the possible responses differ in their mean. A 

response with a lower mean finishing time would be more likely to ‘win the race’ and be produced, 

resulting in a higher cloze probability. 
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The variance of a response’s finishing time distribution represents the trial-to-trial variability in 

the response’s activation rate, due to noise. In the simulations conducted by Staub et. al. (2015), a fixed 

standard deviation was set for all possible responses. This means that the noise level was assumed to be 

the same for all cloze responses, regardless of their mean finishing time or cloze probability. However, 

recent simulations show that this may not be the case. Nakamura and Phillips (2020) have argued that 

uneven noise, namely greater variability of finishing times for responses with higher mean finishing time 

(lower cloze probability), better captures the empirical results. This means that the finishing time 

distribution of low cloze responses is wider than that of high cloze responses. 

One implication of this suggestion is that while the finishing times of a high cloze response 

would very rarely be far from its mean, a finishing time far from the mean is less rare for a low cloze 

response (since its finishing times distribution is much wider). Therefore, when a low cloze word is 

produced as a cloze response to a high constraint sentence, this is likely not because the finishing time 

of the high cloze alternative was much longer than its mean finishing time, allowing the low cloze word 

to ’win the race‘ despite a relatively long finishing time, but rather since the finishing time of the 

produced low cloze response was much shorter than its mean finishing time, overtaking the high cloze 

alternative. 

Our results are in line with the suggestion of Nakamura and Phillips (2020). In the current study, 

the amplitude of the P600 pre-updating effect was similar in the two high constraint conditions. This 

result would only be expected if in most trials in which a low cloze probability word was produced as a 

cloze response to a high constraint sentence, this word won the race because it was highly activated, and 

was therefore also pre-updated. If instead we assume that a high cloze word is just as likely to have a 

finishing time far from its mean as a low cloze word is, then in a significant portion of the trials in this 

condition the activation of the low cloze word was not exceptionally high but it won the race because of 

exceptionally low activation for the high cloze alternative. This assumption would thus predict a smaller 

P600 pre-updating effect in this condition relative to when a high cloze word is produced, since pre-

updating would only occur in a portion of the trials in the high constraint low cloze condition, compared 

to most or all of the trials in the high constraint high cloze condition. Importantly, the lack of difference 

between the P600 pre-updating effect in the two high constraint conditions is a null result, hence the 

current study does not provide a statistically significant result supporting differential noise levels. Our 

results are thus compatible with this suggestion, but further research is needed in order to provide 

corroborating evidence. 

 

4.5) Previous findings on the generation of predictions 

In the current study, the critical word for the ERP analysis was the verb after which a highly probable 

word was available (in the high constraint sentences). This means that we did not look at the processing 

of predictable or unpredictable words, but on the processes that take place prior – when the prediction is 

generated. A few previous studies have looked at the stage of generating predictions (Li, Zhang, Xia, & 

Swaab, 2017; Rommers et al., 2017; Fruchter et al., 2015, Ness & Meltzer-Asscher, 2018a; Ding, Wang, 

& Yang, 2020)15. As discussed above, our current results replicate the P600 pre-updating effect observed 

 
15 Several studies looked at the word prior to a (potentially) predictable word using a pre-nominal article that is 
or is not consistent with the predictable noun (e.g. Delong et al. ,2005; Martin et al., 2013; Niewland et al., 
2017; Nicenboim, Vasishth, & Rösler, 2019; Szewczyk & Wodniecka, 2020; van Berkum et al., 2005; Wicha, 
Moreno, & Kutas, 2004). However, at the article the prediction has already been generated. These studies 
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in Ness and Meltzer-Asscher (2018b). However, different effects were observed in earlier studies (Li, 

Zhang, Xia, & Swaab, 2017; Rommers et al., 2017; Fruchter et al., 2015). Notably, the design and 

materials in these studies differed considerably from the current study, and from one another, leading to 

these inconsistent results. A discussion of these differences, and their bearing on the results, can be found 

in Ness & Meltzer-Asscher (2018a). 

A more recent study (Ding, Wang, & Yang, 2020) is seemingly very similar to the current study. 

As in the current study, high and low constraint sentences were compared and ERPs were measured on 

a verb prior to the predictable noun. However, in contrast to the P600 pre-updating effect we observed, 

the results of Ding et al. (2020) showed a sustained anterior negativity (SAN). Crucially, however, the 

experiment by Ding et al. (2020) included an additional manipulation, the emotional content of the verbs. 

Therefore, the high and low constraint sentences had two versions each, one with an emotionally 

positive/negative verb, and one with an emotionally neutral verb. This meant that the materials had to be 

constructed in a way that would allow for the manipulation of the verb not to have an influence on the 

predictability of the following noun. i.e. the prediction of the noun in the high constraint sentences had 

to be based only on semantically related words prior to the verb, and the verb itself did not contribute 

much to the prediction. This can explain why a SAN was observed: this effect may reflect holding a 

prediction that is expected to be realized at a later point, resulting in increased memory load (Ness & 

Meltzer-Asscher, 2018a). A similar result was observed when a prediction regarding an upcoming noun 

had to be held in memory across an (unpredictable) adjective in Li, Zhang, Xia, and Swaab (2017). 

On the other hand, in the vast majority of our materials, the prediction could not be generated 

before the critical verb and independently of it. For example, in a sentence such as ‘The bridesmaids 

waited breathlessly for the bride to wear the dress’, although a broad prediction related to weddings can 

be formed prior to the verb, at this point the sentence can continue in several ways, causing activation of 

several different nouns (e.g. throw the bouquet, walk down the aisle, cut the cake, and so on). Only once 

the verb appears, a specific, strong prediction (of ‘dress’) can be made. Additionally, this prediction can 

be integrated immediately, since no additional content words appear between the formation of the 

prediction and its expected position. Hence, we would not expect a SAN effect in our study since there 

is no need to hold a prediction. Instead, we expect the P600 effect reflecting the integration of the 

predicted noun, as indeed observed in our results. 

As pointed out in Ness & Meltzer-Asscher (2018a), these seemingly inconsistent results observed 

in different studies looking at the generation of predictions highlight the fact that when forming 

hypotheses or interpreting results we must take into account factors that affect the nature of the 

predictions that are being generated (e.g. the immediacy of the predicted content, the predictive validity 

within the experimental context, etc.). The generation of predictions is not a single uniform process. 

Prediction can encompass several processes, some of which only take place under certain circumstances.  

It is also interesting to compare our results to those of Ness & Meltzer-Asscher (2018a). A visual 

inspection of the P600 pre-updating effect on the verb in both studies suggests that the magnitude of this 

effect was greater in the current study. We can think of two likely causes for this increased effect: i. The 

higher predictive validity in the current study. As explained in the Introduction, Ness & Meltzer-Asscher 

(2018a) proposed that the retrieval threshold is variable. If indeed pre-updating has both benefits (when 

 
therefore test if and how the prediction, generated before the article, is altered, rather than investigating the 
process of generating the prediction. 



82 
 

successful) and costs (when unsuccessful), then different situations may vary in how beneficial it is for a 

comprehender to engage in pre-updating. For example, in a situation where unexpected input is often 

encountered even in high constraint, the costs of prediction failure may outweigh the benefit derived 

from facilitation of processing successfully predicted words. On the other hand, in a situation in which 

the input is noisy and bottom-up evidence is less reliable, the benefits of forming strong predictions may 

be greater. In the current experiment, the predictive validity can be considered to be 100%, since the 

participant provided the completions themselves, and their prediction was therefore never disconfirmed. 

Therefore, strong predictions are encouraged. ii. the speeded cloze task in the current study presumably 

provided more motivation for prediction relative to when participants only had to read for 

comprehension (i.e. answer a comprehension questions following the sentence). Future studies may test 

whether factors such as predictive validity, noisy vs. salient input, task demands, etc. in fact cause 

adaptation of the tendency to pre-update. 

 

4.6) Replicability and reliability of results 

In light of recent studies indicating a “replication crisis” in many research domains (e.g. Errington et al., 

2014; Open Science Collaboration, 2015), the invaluable role of replication within the scientific process 

has become widely acknowledged (e.g. Benson, & Borrego, 2015; Bruna et al., 2017; Burman, Reed, & 

Alm, 2010; Fahs, Morgan, & Kalman, 2003; Sukhtankar, 2017), prompting replication attempts within the 

sentence processing literature (e.g. Nieuwland et. al., 2018; Nicenboim, Vasishth, & Rösler, 2019). The 

design of the current study enabled us to replicate the findings of Staub and colleagues (2015) regarding 

the effects of cloze probability and constraint on production latencies, as well as Ness & Meltzer-

Asscher's (2018a) P600 pre-updating effect on the verb. 

First, the behavioral results replicate the findings of Staub et al. (2015), showing the independent 

effects of cloze probability and constraint on production onsets. The fact that these findings were 

replicated in the current study using different materials and in a different language provides a very strong 

support not only for the replicability of the results, but also for the generalizability of the effects. 

Additionally, the EEG results replicate the P600 pre-updating effect found in high constraint sentences, 

prior to the (potentially) high cloze word, as well as the correlation between this P600 effect and WM 

performance (Ness & Meltzer-Asscher, 2018a). The current experiment differed from Ness & Meltzer-

Asscher (2018a) in that it included a cloze (production) task, while in the previous study the sentences 

were only read for comprehension. Nonetheless, we view the results at the verb as a replication of the 

results of Ness & Meltzer-Asscher (2018a) since this point in the sentence is prior to when participants 

were prompted to produce a completion (in the current experiment) and the processes taking place at this 

point are likely similar despite the different task. 

Finally, and not directly related to the main aims of the current study, having two datasets of 

cloze responses to the same items allowed us to assess the reliability of cloze data and the influence of 

the task procedure (i.e. speeded vs. offline). The results indicated a high reliability: when two different 

participant groups, sampled from the same general population (i.e. native Hebrew speaking, 18-40 years 

old, Tel-Aviv University students), provided cloze responses to the same items, highly similar values 

ware obtained. This held true even though the compared datasets were obtained in speeded and non-

speeded tasks. This conclusion provides methodological validation for the highly prevalent use of cloze 

data in creating experimental materials. Additionally, as pointed out by Staub et al. (2015), it also provides 

justification to infer general conclusions from reaction time results in the speeded task, that apply to the 
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common (non-speeded) task as well, since there is no ground to assume distinct generation processes in 

the two tasks. 

 

5) Conclusion 

The results of the current study indicate that an improbable word can, in some cases, be strongly 

predicted. This was shown to occur prior to when a speaker provides an improbable completion for a 

high constraint sentence in the cloze task. In these cases, the produced word (reflecting the participant's 

strongest prediction at that moment) is not only pre-activated strongly, but it can also be pre-updated (i.e. 

integrated into the sentence’s representation in WM), which involves commitment to the prediction.  

These findings support an activation race mechanism for the initiation of pre-updating, whereby 

multiple parallel predictions compete for activation. The activation of a given word is influenced by its 

probability, but also by noise or idiosyncratic influences. The most probable word, which receives the 

most activation from the sentence, would most often be the first to pass retrieval threshold. Nonetheless, 

a low cloze word would in some cases be strongly pre-activated, passing retrieval threshold prior to the 

high cloze competitor. Such a mechanism accounts for both the occurrence of pre-updating 

(demonstrated in the current study) and the generation of cloze responses (demonstrated by Staub et. al., 

2015, and replicated in the current study), namely the first word to pass retrieval threshold would be 

integrated into the sentence’s representation in WM, and/or produced as a cloze response. 
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3 Discussion 

3.1 A model of lexical prediction  

Prediction during language processing has been extensively studied over the past decades. The current 

work focused on the specific mechanisms that underlie lexical prediction in language processing, 

establishing a distinction between two prediction processes: pre-activation and pre-updating. In a series 

of ERP and behavioral experiments, we provided evidence indicating that multiple predictions are 

simultaneously activated (interacting with each other), and once a highly activated prediction passes 

retrieval threshold it is pre-updated, i.e. integrated into the sentence representation. We showed that pre-

updating is reflected in the P600 component on a word prior to the predicted word (where the prediction 

can be generated), and that the tendency to pre-update depends on the individual’s WM abilities. We 

additionally provided a computational account for the pattern of influence of simultaneously pre-

activated words on each other. 

Taken together, these results provide support for several main aspects of my view, detailed in 

the Introduction, about prediction processes within the processing stages of a word (for more details also 

see Figure 1 and Discussion in chapter 2.1 above, Ness & Meltzer-Asscher, 2018a). Based on this view, 

pre-activation is ‘unavoidable’, it always occurs; multiple possible predictions are pre-activated to 

different extents, with the activation level of each word influenced by several factors such as spreading 

activation from prior words, the probability of the word given the input, properties of the word (e.g. 

frequency), etc. The current results (Ness & Meltzer-Asscher, 2021a) support the idea that multiple 

predictions are simultaneously pre-activated, as well as show that the activation level of a pre-activated 

word is influenced, among other factors, by the alternative predictions that are simultaneously activated. 

Pre-updating, on the other hand, does not always occur. This process is only initiated when the 

activation level of a certain prediction is strong enough to pass a retrieval threshold, prior to the 

realization of the word in the input. Thus, pre-updating would usually be performed for highly probable 

predictions. However, due to the noisy nature of activations, pre-updating would occasionally be 

performed for improbable predictions as well. The current results provide evidence for the occurrence 

of pre-updating in high constraint sentences (Ness & Meltzer-Asscher, 2018b, 2021b), as well as for an 

activation threshold as the trigger for pre-updating (Ness & Meltzer-Asscher, 2021b). 

Another important aspect of this view is that the threshold for pre-updating is variable. It can differ 

between individuals (due to individual differences in cognitive abilities), as well as be adapted to 

different situations (due to factors such as task demands, predictive validity, etc.), thus providing a 

mechanism to balance the benefits of pre-updating when it is successful and the costs incurred when a 

pre-updated prediction is disconfirmed. The need for such a mechanism stems from the assumption that 

disconfirmation of a pre-updated prediction incurs prediction failure costs, such as the need to inhibit the 

falsely predicted word in order to allow integration of another word, as shown in Ness & Meltzer-

Asscher, 2018a (not included in this dissertation). The current results provide evidence that the tendency 

to pre-update is indeed variable between individuals. Specifically, we showed that individuals with 

better WM abilities (reflected in higher reading span scores) display a greater tendency to pre-update 

(Ness & Meltzer-Asscher, 2018b, 2021b). In another study, not included in this dissertation, we also 

provide evidence of adaptation of prediction strength, based on predictive validity (Ness & Meltzer-
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Asscher, 2021c). In that study we manipulated the predictive validity in the experimental context 

(between participants), and observed that prediction failure costs decreased as the participant learned that 

the predictive validity in the experiment is low. This suggests that the threshold for pre-updating may be 

adjusted to adapt to different situations (see farther discussion below). 

The view presented in this work highlights the notion that prediction is not one uniform process; 

rather, prediction can encompass different processes, some of which are initiated only under certain 

circumstances (i.e. pre-updating and inhibition). Surely, some aspects of this view remain to be tested 

(see below for some of the open questions), and may therefore need to be further developed or changed 

based on future evidence; however, a main contribution of the current view is that it explicitly discusses 

not only the processes involved in prediction, but also how and when each process is initiated. In 

proposing and detailing the different mechanisms, it provides an explanation for individual differences 

as well as for adaptation of prediction (via the variable threshold for pre-updating). Additionally, it helps 

reconcile the evidence of prediction failure costs with the evidence for prediction of specific words. As 

discussed in the Introduction, predicting specific words would be a “low pay-off” processing strategy, if 

prediction failure costs exist, since prediction of specific words are highly likely to be contradicted by 

the input (Forster, 1981; Jackendoff, 2002). Nonetheless, there exist both evidence for prediction of 

specific words (Delong, Urbach, & Kutas, 2005; Martin et al., 2013; Nieuwland et al., 2018; Nicenboim, 

Vasishth, & Rösler, 2020; Szewczyk & Wodniecka, 2020; van Berkum et al., 2005; Wicha, Moreno, & 

Kutas, 2004), and for prediction failure costs (Federmeier et al., 2007; Kuperberg, Brothers, & Wlotko, 

2020; Ness & Meltzer-Asscher, 2018a). The current view helps reconcile these findings by explaining 

how prediction can remain a beneficial processing strategy. Namely, we propose that prediction failure 

costs are contingent on the occurrence of pre-updating, and pre-updating is controlled via a (variable) 

threshold mechanism, preventing prediction failure costs when prediction is uncertain. Hence, the 

distinction between pre-activation and pre-updating, and the threshold between them, allow to maintain 

a balance such that when it is not likely to be beneficial to commit to a specific prediction, due to a high 

probability of failure (e.g. in a low constraint context, and/or when predictive validity is low), prediction 

will only manifest in graded pre-activation, and will not incur failure costs; and only when committing 

to a specific prediction has a high probability of success (e.g. in a high constraint context, when predictive 

validity is not low), such commitment is engaged in, i.e. pre-updating occurs. This way, the generation 

of specific word predictions does not entail a frequent occurrence of prediction failure costs.     

3.2 Open questions and future directions 

3.2.1 Pre-updating and inhibition 

As mentioned above, a main assumption of my view is that disconfirmation of a pre-updated prediction 

incurs prediction failure costs, that are not incurred for the processing of an unexpected word if no 

prediction was pre-updated in the first place. Specifically, in Ness & Meltzer-Asscher (2018a, not 

included in this dissertation) we suggested that these costs stem from a need to inhibit the falsely 

predicted word (but see also Kuperberg, Brothers, and Wlotko, 2020, who argue that these costs reflect 

suppression of an event representation rather than inhibition at the word level). In that study, we looked 

at high constraint sentences, ending with either the predictable word, a congruent unexpected word, or 

an anomalous word. Using CMLP, we showed that the highly predicted word is strongly activated prior 
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to its anticipated appearance, but is then inhibited if a congruent unexpected word appears instead (but 

see Federmeier & Rommers, 2018, for indication that disconfirmed predictions may not be fully 

inhibited). Interestingly, this inhibition is not observed if an anomalous word appears. Since inhibition 

of the falsely predicted word does not take place when encountering an anomaly, we have argued that 

this inhibition is required particularly to enable integration of the word that actually appeared in the input 

(see Kutas 1993, and Ness & Meltzer-Asscher, 2018a, for further discussion of this claim).  

The assumption that pre-updating involves integration of the prediction into the sentence 

representation makes the association between pre-updating and inhibition very intuitive, i.e. the 

integration of a prediction into the sentence representation is what causes the need to inhibit it if another 

word needs to be integrated instead. However, thus far we have not provided direct evidence for this 

relation. Namely, we demonstrated inhibition under conditions in which pre-updating is likely to occur, 

i.e. the behavioral inhibition and the f-PNP ERP component were observed in high constraint sentences 

(Ness & Meltzer-Asscher, 2018a), and prediction failure costs were greater when predictive validity in 

the experimental context was high (Ness & Meltzer-Asscher, 2021c), but we have not directly shown that 

inhibition occurs only when pre-updating has previously occurred. Obtaining direct evidence for the 

relation between pre-updating and inhibition poses some methodological challenges, since it is not 

sufficient to demonstrate that, across participants and/or trials, both pre-updating and inhibition occur 

under the same circumstances (since these circumstances may independently cause both pre-updating 

and inhibition, without a direct link between the two processes). Rather, a more direct evidence would 

require a demonstration that when comparing two similar trials, which differ only in whether the specific 

participant in that moment in time preformed pre-updating or not, inhibition only occurs if pre-updating 

has occurred (in that specific trial), but not if pre-updating has not occurred. 

  

3.2.2 Individual differences in prediction processes 

The current work provided indication that individual differences in WM abilities affect the tendency to 

pre-update, by demonstrating correlation between the pre-updating P600 effect and reading span scores 

(Ness & Meltzer-Asscher, 2018b, 2021b). Notably, reading span scores are a relatively non-specific 

measure, which may be influenced by multiple cognitive constructs (see e.g. Daneman & Hannon, 2007; 

Miyake, 2001). Moreover, additional cognitive abilities that are not necessarily reflected in reading span 

scores may affect the tendency to pre-update. For example, it is likely that the tendency to pre-update is 

influenced not only by resources available to allow pre-updating to occur, but also from the ability to 

successfully recover when a pre-updated prediction is disconfirmed. Hence, it would be expected that 

individuals with better ability to perform inhibition would have a greater tendency to pre-update (as the 

‘risk’ is smaller for them). Future work can focus on identifying additional factors that modulate 

individual differences in the tendency to pre-update, by employing a wider variety of tasks. Potentially, 

the tendency to pre-update may be correlated with individual differences in the ability to generate 

accurate predictions (e.g. language proficiency, statistical learning abilities), the ability to perform pre-

updating (e.g. WM-related abilities, general processing speed), and the ability to recover from a 

disconfirmed pre-updated prediction (e.g. the ability to inhibit irrelevant distractors). 
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3.2.3 Adaptation of the retrieval threshold 

In a recent study we have shown that comprehenders can adapt their prediction processes to different 

situations, such that prediction failure costs are reduced if the participant estimates that the predictive 

validity in the experimental context is low (Ness & Meltzer-Asscher, 2021c). We argue that a plausible 

mechanism for such adaptation is the adjustment of the threshold for pre-updating. Namely, 

comprehenders alleviate prediction failure costs when prediction validity is low by raising the threshold, 

thus avoiding pre-updating, which prevents the prediction failure costs associated with disconfirmation 

of pre-updated predictions. Importantly, since the experiments reported in Ness & Meltzer-Asscher 

(2021c) are behavioral, only the effect of prediction failure is measured (prolonged reading times for 

disconfirmed predictions), with no direct indication of pre-updating (as would be reflected by the P600 

pre-updating effect). In order to support the aforementioned adaptation mechanism, there is a need to 

conduct a similar study but with the addition of ERP recording, which would allow to examine whether 

the occurrence of pre-updating (reflected in the P600 effect) is indeed reduced when the participant’s 

estimate of predictive validity is lowered.  

More broadly, if the threshold for pre-updating is indeed adjustable, there may be additional 

factors (other than predictive validity) which can trigger its adjustment. Since the threshold is 

hypothesized to keep the balance between the benefits of successful prediction and the costs of prediction 

failure, identifying the specific factors that trigger adaptation may inform us about what makes 

prediction beneficial. Several potential benefits have been suggested for the use of prediction as a 

language processing strategy (see Huettig, 2015, for discussion of motivations for prediction). For 

example, prediction may be helpful in reducing the ambiguity that exists in most linguistic input, either 

due to semantically/grammatically ambiguous utterances or due to perceptual ambiguity (e.g. arising 

from noisy input and production variation), by constraining the interpretation of the input to more 

probable meanings/representations. Additionally, prediction has also been argued to enable coordinated 

‘turn taking’ during dialogue. The specific benefits comprehenders derive from prediction determine 

what factors should influence how beneficial prediction is in different situations. For example, if 

prediction is indeed helpful in disambiguating perceptually ambiguous input, then it may be more 

beneficial to generate strong predictions in a noisy environment than in a quiet one; if prediction is 

needed to coordinate ‘turn taking’, it may be more beneficial to generate strong predictions during a 

conversation than during passive listening (e.g. listening to a lecture or watching a movie). Thus, further 

work can examine additional factors, such as noise and task demands, which may trigger adaptation of 

the threshold for pre-updating.   

3.2.4 Prediction processes in neurodiverse populations 

Several studies have shown decreased predictive abilities in language processing in older adults (e.g. 

Dave et al., 2018; DeLong et al., 2012; Wlotko, Federmeier, & Kutas, 2012), and in different 

neurocognitive disorders (e.g. in aphasia: Hanne et al., 2015; Warren, Dickey, & Lei, 2016). A better 

understanding of the specific mechanisms that underlie prediction can help provide a more accurate 

account of the impaired processes in each population. For example, recent studies on prediction in older 

adults indicate differential influence of age on N400 effects and on PNP effects (Dave et al., 2018; 

Wlotko, Federmeier, & Kutas, 2012). This may suggest that pre-activation and pre-updating are 

differentially affected by aging, but further research is needed in order to support this claim. Similarly, 
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 תקציר 

יזוי בעת עיבוד שפה היווה מושא למחקר רב במהלך העשורים האחרונים, עם מחקרים רבים המתמקדים במנגנונים ח

הם   בו  והאופן  שלהם,  המאפיינים  בחיזוי,  העבודה  המעורבים  ומוחיים.  התנהגותיים  במדדים  ביטוי  לידי  באים 

לקסיקאלי/סמנטי  מידע  של  איקטוב  מוקדמת",  "אקטיבציה  חיזוי:  תהליכי  שני  בין  בהבחנה  מתמקדת  הנוכחית 

 ."עדכון מוקדם", עדכון ייצוג המשפט הנבנה בזיכרון העבודה, לכלול את תוכן החיזוי-טווח, ו-המאוחסן בזיכרון ארוך

בעבודה זו אני מציעה ובוחנת מודל עבור פעולת תהליכים אלו והשתלבותם בשלבי העיבוד של מילה במשפט.  

על פי מודל זה, חיזויים שונים מאוקטבים במקביל ובאופן מדורג )בהתאם לעוצמת החיזוי של כל מילה(. עדכון מוקדם  

מידת האקטיבציה של חיזוי מסויים עוברת   מתרחש רק אם חיזוי כלשהו מאוקטב באופן חזק מאוד. כלומר, רק אם

סף שליפה, מתבצע עדכון מוקדם, והמילה שהייתה מאוקטבת מאוד עובדת אינטגרציה אל תוך ייצוג המשפט כאשר  

החיזוי מתרחש, במקום כאשר המילה מופיעה בקלט. אם חיזוי שעבר עדכון מוקדם מתברר כשגוי, שגיאת החיזוי 

ביצוע אינהיביציה של המילה השגויה שעודכנה(. היבט חשוב של מודל זה הוא שהסף תגרור עלות עיבודית )לצורך  

לעדכון מוקדם אינו קבוע. סף זה יכול להיות שונה בין אנשים שונים )בשל הבדלים בינאישיים במאפיינים כגון יכולות 

מהימנות הניבוי בסיטואציה,    זיכרון עבודה(. בנוסף, הסף יכול לעבור התאמה לסיטואציות שונות )בשל מאפיינים כמו

רמות הרעש בקלט, וצרכי המטלה(. בכך סף זה שולט בנטייה לבצע עדכון מוקדם, על מנת לאזן בין הפסיליטציה 

 .המתקבלת בעת חיזוי נכון לבין העלות העיבודית של חיזוי שגוי 

ואלקטר  התנהגותיים  ניסויים  סדרת  על  המדווחים  מאמרים,  משלושה  מורכבת  זו    ופיזיולוגיים עבודה 

(event-related potentials, ERP)    במאמר לעיל.  שהוצע  המודל  של  העיקריים  האספקטים  את  לבחון  שמטרתם 

הראשון מוצגת עדות אלקטרופיזיולוגית לקיומו של תהליך העדכון המוקדם, אשר מתבטאת כאמפליטודה גבוהה של  

שפטים שאינם מייצרים חיזוי חזק(, על הפועל המוביל במשפטים המייצרים חיזוי חזק )לעומת מ P600 -קומפוננטת ה

 למילה מאוד צפויה. בנוסף אנו מראות שאפקט זה הינו בקורלציה חיובית עם ציוני הנבדקים במבדק זיכרון עבודה

(reading span)  ,תוצאה המעידה כי הנטייה לבצע עדכון מוקדם משתנה בין נבדקים בהתאם ליכולות זיכרון העבודה. 

 speeded cloze)  במאמר השני אנו בוחנות את מהירות תחילת ההפקה במטלת השלמת משפטים מזורזת 

task  ,) במהירות המשפט  את  המשלימה  מילה  בקול  להפיק  נדרש  הנבדק  שבה  משפטים  השלמת  מטלת  כלומר, 

עוצמת הניבוי האפשרית. אנו מראות שמהירות תחילת ההפקה של ההשלמה הנפוצה ביותר עבור כל משפט מושפעת מ

והקשר הסמנטי של מתחרה שאינו מופק, המילה השניה הצפויה ביותר. תוצאות אלה תומכות בכך שחיזויים שונים  

מאוקטבים במקביל, ומראות כי רמת האקטיבציה של מילה חזויה מושפעת מהחיזויים האלטרנטיביים הקיימים. 

רות תחילת ההפקה במטלת השלמת משפטים מזורזת,  במאמר זה אנחנו גם מספקות מודל חישובי אשר ממדל את מהי 

 ,interactive activation and competition model) ע"י שינוי והרחבה של מודל האינטראקציה אקטיבציה ותחרות

IAC )של Chen ו- Mirman (2012 .) 

מת  במאמר השלישי אנו חוקרות את הנסיבות בהן עדכון מוקדם מתבצע, באמצעות שימוש במטלת השל 

על הפועל המופיע לפני הפקת ההשלמה למשפט. שיטה זו איפשרה לנו לנתח את   ERP משפטים מזורזת תוך הקלטת 

בהתבסס על המילה הספציפית שהפיק/ה כל נבדק/ת בכל צעד ניסוי, אשר משקפת את החיזוי החזק    ERP  -נתוני ה

ה את  שיחזרו  התוצאות  המסויים.  ברגע  הספציפי/ת  הנבדק/ת  עבור  אמפליטודתביותר  של  גבוהה   P600 ממצא 

במשפטים המייצרים חיזוי חזק )לעומת משפטים שאינם מייצרים חיזוי חזק(, על הפועל המוביל למילה מאוד צפויה.  

יתרה מכך, אפקט זה התקיים במשפטים המייצרים חיזוי חזק )לעומת משפטים שאינם מייצרים חיזוי חזק(, אפילו  

הנבדק/ת בצעד ניסוי מסויים )המשתקף במילה שהופקה( היה של מילה עם סבירות  כאשר החיזוי החזק ביותר עבור 

 .נמוכה. תוצאות אלה תומכות במרוץ אקטיבציה רועש אל עבר סף שליפה כמנגנון המפעיל את תהליך העדכון המוקדם

עורבים בחיזוי בזמן עיבוד שפה, בכללן, תוצאות אלה מקדמות את ההבנה של המנגנונים הספציפיים המ 

מדגישות את הרעיון שחיזוי אינו תהליך אחיד בודד, ומקדמות מודל מפורט יותר של מנגנוני החיזוי. 
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