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Abstract

Prediction during language processing has been extensively studied over the past decades, with a
growing body of research focusing on the mechanisms involved in prediction, their properties, and their
behavioral and neural manifestation. The current work focuses on a suggested distinction between two
qualitatively different lexical prediction processes: “Pre-activation”, i.e. activation of lexical/semantic
knowledge stored in long-term memory, and “pre-updating”, i.e. updating of the sentence’s
representation built in working memory (WM) to include the predicted content.

In this work I develop and test a model of the joint workings of pre-activation and pre-updating
within the routine processing stages of a word in sentence context. According to this model, multiple
lexical predictions are simultaneously pre-activated in a graded manner. Pre-updating is only initiated if
a certain prediction is highly activated. Namely, if the activation level of a certain prediction passes a
retrieval threshold, pre-updating occurs, and the highly activated word is integrated into the sentence
representation already when the prediction is generated, rather than when the word appears in the input.
If a pre-updated prediction is disconfirmed, prediction failure costs will be incurred (attributed to the
need to inhibit the falsely predicted word). Importantly, the threshold for pre-updating is variable; it can
differ between individuals (due to factors such as WM abilities), and be adjusted to different situations
(due to factors such as predictive validity, noise levels in the input, and task demands), thus controlling
the tendency to perform pre-updating in order to balance the benefits of successful predictions and the
costs of unsuccessful predictions.

This work is composed of three published papers, reporting a series of behavioral and event-
related potentials (ERP) experiments aimed to provide support for the main aspects of the view outlined
above. In the first paper, we provide electrophysiological evidence for pre-updating, manifested as an
increased P600 amplitude in high (relative to low) constraint sentences, on a verb prior to the highly
probable word. We interpret this effect to indicate integration of the highly probable prediction prior to
its realization in the input. We additionally show that this P600 effect is positively correlated with
participants’ reading span scores, suggesting that the tendency to pre-update varies between individuals
depending on WM abilities.

In the second paper we examine production onsets in a speeded cloze task (i.e. a sentence
completion task in which participants are instructed to produce a completion out loud as quickly as
possible). We show that production onsets of the modal response to a sentence (i.e. the most probable
completion) are influenced by the strength (cloze probability) and relatedness of a not-produced
competitor, the second most probable completion. These results support the idea that multiple
predictions are simultaneously pre-activated, and show that the activation level of a predicted word is
influenced by the alternative predictions. We additionally provide a computational model to account for
production onsets in the speeded cloze task, by adapting and extending Chen and Mirman’s (2012)
interactive activation and competition (IAC) model.

In the third paper we explore the circumstances under which pre-updating occurs, by employing
a speeded cloze task while measuring ERPs on a verb prior to the cloze response production. This allows
us to analyze the ERPs based on the specific response produced by the participant in each trial, reflecting



the participant’s strongest prediction in that moment. We replicated the increased P600 amplitude in high
(relative to low) constraint sentences at the verb leading to the highly probable prediction. Importantly,
this pre-updating P600 effect was observed in high constraint sentences (relative to low constraint) even
when the participant’s strongest prediction in that moment (their produced response) was a low cloze
word. These results support a noisy activation race towards a threshold as the mechanism for initiation
of pre-updating.

Taken together, these results advance our understanding of the specific mechanisms that
underlie prediction during language processing, highlighting the notion that prediction is not one

uniform process, and promoting a more nuanced view of prediction.
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1 Introduction

Prediction of upcoming input is a core processing strategy in the human brain, shared across many (if not
all) cognitive domains, including perception, sensory-motor processing, and learning (for reviews see
Clark, 2015; Hohwy, 2018). The idea that prediction is involved in cognitive processing dates back to the
19th century (James, 1890). In the broadest sense, predictive processing refers to any processing that
incorporates information from previous and present input, with inference about future input. In order for
this to happen, processing has to be driven not exclusively by the (bottom-up) input, but also by higher-
level representations, i.e. accumulated knowledge that can enable the formation of hypotheses about
likely upcoming input given previous input, based on experience (see e.g. Bubic, von Cramon, &
Schubotz, 2010, for discussion of various definitions of prediction in cognitive science and neuroscience).

Over the past decades, numerous studies have suggested an important role for prediction also in
language processing. These studies indicate that while reading or listening to linguistic stimuli, we do
not passively wait for the input and process it as it comes, but rather constantly engage in anticipatory
processing (for reviews see Huettig, 2015; Kuperberg & Jaeger, 2016; Van Petten & Luka, 2012).
Prediction in language processing can take place at various linguistic levels or domains. For example,
studies have demonstrated prediction of syntactic structure (e.g. Arai & Keller, 2013; Farmer,
Christiansen, & Monaghan, 2006; Garnsey et al., 1997; Gibson & Wu, 2013; Hare et al., 2003; Rohde,
Levy, & Kehler, 2011; Tanenhaus, Spivey-Knowlton, Eberhard, & Sedivy, 1995; Wilson & Garnsey,
2009), semantic content (Altmann & Kamide, 1999, 2007; Chambers, Tanenhaus, Eberhard, Filip, &
Carlson, 2002; Federmeier & Kutas, 1999; Kamide, Altmann, & Haywood, 2003; Kuperberg, Paczynski,
& Ditman, 2011; Matsuki et al., 2011; Metusalem et al., 2012; Paczynski & Kuperberg, 2011, 2012; Xiang
& Kuperberg, 2015), phonological information (Allopenna, Magnuson, & Tanenhaus, 1998; DeLong et
al., 2005), and orthographic information (Del.ong et al., 2005; Dikker, Rabagliati, Farmer, & Pylkkéanen,
2010). The current work mostly focuses on what is commonly referred to as lexical predictions, i.e.
prediction of the lexical-semantic content of an upcoming word in a sentence, although some of the ideas

discussed here may also be relevant for prediction at other levels of representation.

1.1 Evidence of prediction during language processing

An early finding in support of lexical prediction during sentence processing is the decreased reading
times observed for highly predictable words relative to unpredictable words (e.g. Ehrlich & Rayner, 1981;
Forster, 1981; Schwanenflugel & LaCount, 1988; Schwanenflugel & Shoben, 1985; Stanovich & West,
1983; Traxler & Foss, 2000). The predictability of a word in a sentence context is commonly
operationalized using cloze probability values. To obtain these values, participants are given a sentence
completion questionnaire termed a ‘cloze questionnaire’, in which the beginning of a sentence is
presented, and are asked to provide the first completion that comes to mind. The cloze probability of a
word is defined as the percentage of participants who provided it as the sentence’s completion, and this
value is considered to reflect how predictable the word is, following the sentence context. An additional
measure that is calculated using the cloze task is ‘sentence constraint’, which is defined as the percentage
of participants who provided the most common completion for the sentence. This value is considered to
reflect the extent to which the sentence context encourages a strong prediction. For example, in sentence



(I) below, the word ‘popcorn’ has a 75% cloze probability since it is produced by 75% of the participants
in a cloze task, and the word ‘candy’ has a 10% cloze probability. The sentence constraint for sentence
context (I) is 75%, since this is the cloze probability of its most probable completion. This sentence is
thus highly constraining, i.e., it encourages a strong prediction. On the other hand, for sentence (II) there
is no particularly highly probable completion. The most probable completion for this sentence is ‘book’
and its cloze probability is 25%. Therefore, sentence (II) has a low constraint (25%), which reflects the
fact that the sentence does not encourage a strong prediction.*

I Before the movie even started, the kids started to eat the
A. popcorn (75%)
B. candy (10%)
II. In the classroom, Amy opened the cabinet to take out the ____
A. book (25%)
B. notebook (10%)

The studies mentioned above (Ehrlich & Rayner, 1981; Forster, 1981; Schwanenflugel &
LaCount, 1988; Schwanenflugel & Shoben, 1985; Stanovich & West, 1983; Traxler & Foss, 2000) found
decreased reading times for words with high cloze probability, relative to low cloze probability words.
This finding can be explained if probable words are predicted in advance, which means that some of their
processing is done prior to their realization in the input, leading to facilitation once they appear (see
below for a more specific account of what processes may be carried out predictively).

An additional classical finding in support of prediction comes from the ‘visual world’ eye-
tracking paradigm. Altmann and Kamide (1999) showed that when listening to sentences such as ‘the boy
will eat the cake’, in which the verb has a strong selectional restriction (i.e. requires an edible object),
while looking at a visual array, participants look at the only picture of an edible object in the display (a
cake) well before the word ‘cake’ appears in the sentence. This pattern contrasts with the pattern observed
for sentences with a less restrictive verb such as ‘the boy will move the cake’. The early looks to the
predicted object in the highly constraining contexts indicate anticipation of the upcoming noun (see also
Boland, 2005; Kamide, Altmann, & Haywood, 2003).

Finally, a large body of research on prediction in language comes from event-related potential
(ERP) experiments. The amplitude of the N400 component was shown by dozens of studies to be
decreased for predictable relative to unpredictable words, indicating decreased processing difficulty (see
review in Kutas & Federmeier, 2011). In section 1.4.1 below I elaborate further on the N400 component

and its relevance to prediction.

1.2 Prediction failure costs and specific word prediction

Importantly, as often noted in the literature, while the findings mentioned above can be attributed to
prediction of specific words, they are also compatible with the formation of more general expectations
(e.g. Federmeier & Kutas, 1999; Luke & Christianson, 2016; Van Petten & Luka, 2012). Namely, instead

1 This example was constructed for explanatory purposes, and the presented cloze probabilities are rough
estimates.
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of leading to prediction of upcoming words, a context can lead to activation of some semantic features,
for example, the verb “drink” would lead to activation of semantic features such as “liquid” rather than
to the prediction of a specific word such as “water”. This process would still result in the effects discussed
above, since the processing of e.g. “water” will be facilitated due the activation of its feature “liquid”
(even if the word ‘water’ was not directly predicted).

Forming specific word predictions was claimed by some authors to be an implausible processing
strategy, since the more specific a prediction is, the more likely it is to be contradicted by the input.
Hence, forming specific predictions would have a low ‘pay-off’ (Forster, 1981; Jackendoff, 2002).
Underlying this ‘low pay-off’ argument is an implicit assumption that the generation of specific
predictions consumes some resources, or that the disconfirmation of a prediction incurs prediction failure
costs (or both), making the scenario of having a wrong prediction worst then the scenario of not
generating a prediction at all (Van Petten & Luka, 2012). Without this assumption, namely if correct
predictions are beneficial but incorrect predictions incur no costs, the generation of predictions would
be rational regardless of their likelihood of success.

Over the years, several researchers have tried to uncover prediction failure costs. As observed
by Van Petten and Luka (2012), in order to make a case for prediction failure costs, it is not sufficient to
observe the prevalent finding that the processing of unpredictable words is more demanding than the
processing of predictable words (discussed above), since this finding can be explained merely by
applying to facilitation for successful predictions. Thus, prediction failure costs can only be evidenced
by differences in the processing of words which are unpredictable to the same degree, when a strong
prediction could have been formed (i.e. in a high constraint context) relative to when no highly probable
prediction was available in the first place (i.e. in low constraint context). In this case, since the
comparison is between similarly unpredictable words, there is no facilitation due to predictability, and a
difference, if observed, can only be attributed to the existence of the falsely predicted word in the high
constraint context.

A few studies revealed little to no evidence of such differences, mostly in behavioral measures
(e.g. Frisson, Harvey, & Staub, 2017; Luke & Christianson, 2016, Van Petten et al., 1999). However, ERP
studies have produced a robust and well-replicated indication of increased processing demands that are
observed when participants are presented with an unexpected word in high relative to low constraint
contexts, reflected as a frontal post-N400 positivity (f-PNP; e.g. Federmeier et al., 2007; Kuperberg,
Brothers, & Wlotko, 2020). For example, Federmeier and colleagues (2007) compared sentences such as
“The children went outside to play/look ...”, to sentences such as “Joy was too frightened to move/look
...”, examining the ERPs elicited by ‘look’ in both sentences. In the former sentence, ‘look’ is presented
in a high constraint context, since the word ‘play’ is highly probable (85% cloze probability). In the latter
sentence, on the other hand, ‘look’ is presented in a low constraint context, since the most probable word,
‘moved’, has only 35% cloze probability. Crucially, although the two sentences differ in constraint (85%
versus 35%), the cloze probability of the word ‘look’ is similar in both (3%). The results showed that
while the N400 amplitude elicited by ‘look’ did not differ between these sentences, a f-PNP was elicited
by ‘look’ in high relative to low constraint context. Since ‘look’ is similarly unpredictable in both
sentences, this result cannot be attributed to the unpredictability of the presented word. Instead, it is
attributed to the disconfirmation of a strong prediction in the high constraint context.

The f-PNP findings thus provide evidence of prediction failure costs, i.e. when confronted with
an unpredictable word, additional processes need to be recruited in order to overcome a disconfirmed
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prediction, when there was one. More specifically, in Ness and Meltzer-Asscher (2018a, not included in
this dissertation), we have provided evidence suggesting that when a strong prediction fails, inhibition
of the disconfirmed prediction is needed in order to enable integration of the actual input, and that this
inhibition is reflected in the f-PNP component. Using the cross-modal lexical priming (CMLP) paradigm,
we showed that a highly predictable word is strongly activated prior to its anticipated appearance, but is
then inhibited if a (congruent) unexpected word appears instead (but see Federmeier & Rommers, 2018,
for indication that disconfirmed predictions may not be fully inhibited). Moreover, the inhibition
behaviorally measured in the CMLP task was correlated with the amplitude of the f-PNP component in
an ERP study with the same materials, in line with the suggestion that the f-PNP reflects this inhibition
process. In a similar vein, Kuperberg, Brothers, and Wlotko (2020) have also suggested that the f-PNP
component reflects suppression of a disconfirmed prediction. However, while in Ness and Meltzer-
Asscher (2018a) we focused on inhibition at the word level, Kuperberg Brothers, and Wlotko (2020) argue
for suppression at a higher level of representation, i.e. the event or the situation model.

However, despite these potential costs of prediction failure, evidence suggests that
comprehenders do form highly specific predictions, at least under certain circumstances. Namely,
comprehenders predict the exact word that is expected to appear, including its phonological form,
grammatical features (e.g. gender), etc. (e.g. Delong, Urbach, & Kutas, 2005; Martin et al., 2013;
Nieuwland et al., 2018; Nicenboim, Vasishth, & Rdsler, 2020; Szewczyk & Wodniecka, 2020; van
Berkum et al., 2005; Wicha, Moreno, & Kutas, 2004). For example, Wicha and colleagues (2004)
examined ERPs elicited when Spanish native speakers read a determiner (el/la, un/una, las/los), which
appears prior to the noun and has to agree with the noun’s grammatical gender. Their results show that
in sentences that lead to a highly probable noun, determiners with a gender feature that does not match
the predictable noun elicit enhanced positivity. These results indicate that the predictions generated were
beyond the conceptual level, such that a specific noun was predicted, including its grammatical features.
Another study tested ERP responses to words that are form-related (e.g. book-hook) or semantically
related (e.g. book-page) to the most predictable word in moderately and highly constraining sentences
(Ito, Corley, Pickering, Martin, & Nieuwland, 2016). When the sentences were presented at a rate of
500ms per word, a reduced N400 (relative to unrelated words) was found only for semantically related
words, not for form-related ones. A longer SOA (700ms), however, led to a reduced N400 for form-related
words as well, but only in highly constraining sentences. These results indicate that predictions of word
form, although perhaps requiring more time than semantic predictions and depending on the sentence’s

constraint, do occur.

1.3 Pre-activation and pre-updating

In recent years, a distinction was suggested to exist between two qualitatively distinct prediction
processes, pre-activation and pre-updating (Lau, Holcomb, & Kuperberg, 2013; Kuperberg & Jaeger,
2016), as explained below. I suggest that this distinction can potentially explain how prediction can be a
beneficial processing strategy, despite the apparent contradiction between the formation of highly
specific predictions (which would have a high probability of failure), and the existence of prediction
failure costs (which would make the generation of specific predictions a costly strategy).



“Pre-activation” refers to an increase in the activation level of knowledge stored in long-term
memory, i.e. the concept’s representation in the lexicon, due to spreading activation as well as more
controlled prediction processes. Multiple words can be simultaneously pre-activated. The findings
discussed above, demonstrating decreased processing demands for predictable words, are commonly
attributed to pre-activation, i.e., the processing of a predictable word is facilitated since the word is
already activated to some extent, prior to its bottom-up activation (e.g. Federmeier, 2007; Federmeier &
Kutas, 1999; Kuperberg & Jaeger, 2016).

In contrast, the term “pre-updating” is used to refer to the updating of the sentence’s
representation built in working memory (WM), to include the predicted content. This process was
initially posited by Lau Holcomb, and Kuperberg (2013), based on the finding that the N400 effect on
target words preceded by prime words was affected by predictive validity (manipulated by changing the
proportion of related word pairs in the experimental context). Specifically, their results showed that the
reduction in N400 amplitude for related prime-target pairs was greater in an experimental block in which
the proportion of related pairs was high, thus encouraging prediction, relative to a block with a lower
proportion of related pairs (making prediction less beneficial). The authors suggested that these results
indicate pre-updating, under the assumption that high predictive validity leads to the pre-updating of
WM representations, and the updated WM representations in turn affect activations, leading to a greater
reduction in N400 amplitude for related pairs. However, there is no reason to assume that top-down
control cannot directly enhance or limit the spread of activations, without the mediation of WM
representations (see e.g. Van Berkum, 2009). Therefore, these results do not provide direct evidence of
pre-updating. In this work, my first goal was thus to provide evidence of pre-updating, by more directly
looking at integration processes rather than activations (Ness & Meltzer-Asscher, 2018b, below).

A key difference between pre-activation and pre-updating is that while the former results in
priming of multiple words, the latter entails commitment to a specific prediction. Accordingly, I propose
that only a pre-updated prediction incurs processing costs if disconfirmed. If no commitment is made
about an upcoming word, then processing difficulty associated with an unexpected word would only
depend on that word’s activation level (correlated by hypothesis with its cloze probability): less probable
words need to accumulate more activation in order to be retrieved. However, there would be no
additional costs related to any alternative prediction that was generated. In contrast, if commitment was
made, i.e. if a prediction was pre-updated into the sentence representation, then the unexpected word that
appears in the input cannot be seamlessly processed. Inhibition of the pre-updated prediction is required
in order to enable integration of another word instead (see further discussion in Ness & Meltzer-Asscher,
2018a). Thus, unlike when only pre-activation has taken place, the disconfirmation of a pre-updated
prediction does incur additional processing costs.

The proposed view of pre-activation and pre-updating is summarized in Figure 1. I view pre-
activation as an “unavoidable” or “automatic” process that occurs whenever linguistic input is processed.
However, only when activation of some predicted content reaches a certain threshold, this content is
updated into the sentence representation. In many cases, the threshold is reached only with the aid of
bottom-up input, namely when the predicted word is encountered in the sentence. However, the retrieval
threshold can also be reached prior to the realization of the word in the input, when the sentence being
processed is highly constraining (i.e. leading to a stronger prediction).
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Figure 1. An outline of prediction processes within the processing stages of a word.

I additionally propose that the retrieval threshold which initiates pre-updating can potentially
vary between individuals, such that for a similar prediction strength, different comprehenders would be
more or less likely to pre-update, depending on their individual traits. For example, comprehenders with
greater WM abilities and better ability to handle prediction failure costs, if these would be incurred, may
be more inclined to pre-update, namely have a lower retrieval threshold. This suggestion accords with
proposals of individual differences in threshold-based mechanisms in other cognitive domains, such as
decision making and response speed-accuracy tradeoff (e.g. Heitz, 2014; Jackson et al., 2016).

The retrieval threshold may also vary between different situations, depending on factors such as
task demands, predictive validity and noise levels, which influence how beneficial it is to engage in
strong prediction in a given situation. For example, in a situation where predictive validity is low (i.e.
when strong predictions are often violated, namely, there is a high proportion of high constraint contexts
that end with an unexpected word), it may not be beneficial to commit to a specific prediction even in
high constraint contexts, and therefore the threshold for pre-updating may be raised. Several studies have
shown that predictions can be adapted to different situations (e.g. Brothers et al., 2019; Brothers, Swaab,
& Traxler, 2017; Hutchison 2007; Lau, Holcomb, & Kuperberg, 2013; Neely, 1977; Schwanenflugel &
Shoben, 1985). However, the manipulations in these studies did not specifically target pre-updating or
prediction failure costs. In a recent study (Ness & Meltzer-Asscher 2021c, not included in this
dissertation), we have shown that prediction failure costs decrease when the participant estimates that
the predictive validity in the experimental context is low. These results provide initial indication that
comprehenders may alleviate prediction failure costs when prediction validity is low by raising the
threshold for pre-updating, thus avoiding pre-updating and preventing the need to perform inhibition
when the prediction is disconfirmed.

Thus, in situations where it is not likely to be beneficial to form a specific prediction and commit
to it, due to a high probability of failure (e.g. in a low constraint context, and/or when predictive validity
is low), prediction will only manifest in graded pre-activation, and will not incur failure costs (even if the
most probable word does not appear). Only when committing to a specific prediction has a high
probability of success (e.g. in a high constraint context, when predictive validity is not low), such
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commitment is engaged in, i.e. pre-updating occurs. In these scenarios, the benefits of successful
prediction are more frequent than the costs of failure.

I also propose that the distinction between pre-activation and pre-updating can provide an
explanation for why prediction failure costs where not always observed in the literature (e.g. Frisson,
Harvey, & Staub, 2017; Luke & Christianson, 2016; , Van Petten et al., 1999). First, under the current
view, prediction failure costs are not gradual throughout the entire scale of sentence constraint; they only
occur at the higher end of the scale. For example, consider an unpredictable word with e.g. 5% cloze
probability, appearing in a moderately constraining sentence with e.g. 50% sentence constraint,
compared to a similarly low cloze probability word (5%) appearing in a highly constraining sentence with
e.g. 85% sentence constraint. In both cases there is some prediction error, but this does not entail that
prediction failure costs will be proportional to the magnitude of the prediction error in each sentence.
Instead, if pre-updating only occurs for very strong predictions (e.g. predictions with cloze probability
above 70%), then in sentences with 50% constraint there would be no prediction failure costs at all. This
may hinder detection of prediction failure costs in analyses designed to test for correlation between
prediction error (or an equivalent measure) and prediction failure costs, throughout the entire range of
constraint, i.e. including sentences with moderately and even low constraint (e.g. Luke & Christianson,
2016). Moreover, the occurrence of prediction failure costs depends on the tendency to pre-update, which
may vary substantially depending on the specific details of each experiment (e.g. predictive validity, task
demands). Specifically, this may contribute to the lack of evidence for prediction failure costs in
experiments employing eye-tracking while reading (Frisson, Harvey, & Staub, 2017; Luke &
Christianson, 2016). In such experiments, sentences are presented in their entirety and for unlimited time,
and the participant can control their reading rate as well as regress to previously read material. For this
reason, participants have no rational incentive to engage in strong prediction. Namely, when the
participant controls their intake of the input, there may be no reason to ‘run ahead’ and integrate a
prediction prior to its perception, since it can simply be read at a pace that best corresponds to the
participant’s processing. Notably, this is in contrast to spoken language, in which the auditory input
rapidly disappears, as well as to visual word-by-word presentation at a fixed rate, which is common in
psycholinguistic experiments (and specifically in the ERP literature on prediction).

1.4 ERP correlates of activation and integration

Studies 1 and 3 reported below use event-related potentials to investigate prediction processes. I thus
briefly discuss here the most relevant findings from the two ERP components I used — the N400 and the
P600. For more detailed reviews see Kutas & Federmeier (2011) and Brouwer et al. (2017).

1.41 The N400
The N400 ERP component is a centro-parietal negativity peaking between 300 and 500 ms after stimulus
onset. This highly studied component was initially found for semantically incongruent sentence-final
words (e.g. the word ‘socks’ in the sentence: “he spread the warm bread with socks”) relative to
congruent ones (Kutas & Hillyard, 1980). However, it was later shown that the N400 is not specifically
elicited by semantic incongruency. Rather, the component is also manifested in response to congruent
words, showing a graded amplitude that inversely correlates with the word’s cloze probability (Kutas &



Hillyard, 1984; Kutas, Lindamood, & Hillyard, 1984, Delong, Urbach & Kutas, 2005; Wlotko &
Federmeier, 2012). Moreover, the N400 elicited by mid-sentence content words in an unfolding sentence
becomes progressively smaller as the sentence context becomes increasingly constraining (i.e. leading
to stronger predictions) (Van Petten & Kutas, 1990, 1991; Van Petten, 1993; Dambacher, Kliegl, Hofmann
& Jacobs, 2006). Taken together, these findings suggest that the amplitude of the N400 is inversely
correlated with the activation level of a word, thus reflecting the effort exerted to retrieve the word (see
e.g. Brouwer et al., 2012, 2017, Delong, Urbach, & Kutas, 2005, Federmeier and Laszlo, 2009; Kutas and
Federmeier, 2000, 2011). Namely, the more pre-activated a word is, the easier it is to retrieve, and the
lower the N400 amplitude it elicits.

Another robust finding is that unpredictable words that are semantically related to the
predictable word elicit a smaller N400 compared to unrelated words. This pattern was demonstrated both
for low-cloze congruent words (Thornhill & Van Petten, 2012), and for anomalies (Kutas et al., 1984;
Kutas & Hillyard, 1984; Federmeier & Kutas, 1999). For example, in a sentence such as “They wanted to
make the hotel look more like a tropical resort. So along the driveway, they planted rows of
palms/pines/tulips”, the word ‘pines’, elicits decreased N400 amplitude compared to the word ‘tulips’,
due to the greater relatedness of the former to the predictable continuation ‘palms’ (Federmeier & Kutas,
1999). This result can be explained by assuming overlap of pre-activated features (e.g. ‘a tree’) between
the predicted word and related words (Federmeier & Kutas, 1999), or spreading activations from the
predicted word to related words, causing the related word to be activated and therefore easier to retrieve,
thus eliciting a smaller N400 relative to an unrelated word.

Notably, the N400 was argued by several authors to reflect integration demands, rather than
retrieval costs (e.g. Brown & Hagoort, 1993; Hagoort et al., 2009). However, as noted by Brouwer and
colleagues (2012, 2017), this suggestion cannot account for the reduced N400 observed for anomalies
when they are related to a predictable word (Kutas et al., 1984; Kutas & Hillyard, 1984; Federmeier &
Kutas, 1999). Since these words create anomalous sentences, their integration should be difficult
regardless of their relatedness to a predictable word, and they should thus elicit a large N400, contrary to
fact. In contrast, as explained above, the retrieval view predicts a small N400 for these words, as their
retrieval is facilitated by the pre-activation of the predicted word, which is related to them.

Additionally, the suggestion that the N400 indexes integration rather than retrieval costs is also
challenged by findings showing that sentences which are anomalous due to thematic role reversal of a
highly probable role assignment, do not elicit increased N400 amplitudes, even though integration should
be difficult (e.g. Chow & Phillips, 2013; Hoeks, Stowe, & Doedens, 2004; Kim & Osterhout, 2005;
Kuperberg et al., 2007; Van Herten, Kolk, & Chwilla, 2005). For example, Hoeks and colleagues (2004)
have shown that in anomalous Dutch sentences such as (III) below, the verb (geworpen, ‘thrown’) does
not elicit increased N400 amplitude, relative to congruent control sentences such as (I'V) (these sentences
instead elicit increased P600 amplitudes, see discussion of the “semantic P600” below). In these
sentences, the integration of ‘thrown’ should be more difficult in (III) than in (I'V), but this is not reflected
in the N400. In contrast, retrieval should be similarly easy in both sentences, since ‘thrown’ is highly
activated by the words ‘javelin’ and ‘athlete’ (regardless of the structure in which they appear), in line
with the absence of an N400 effect. Note, that the absence of increased N400 in such sentences does not
rule out the possibility that the N400 reflects both retrieval and integration, to some extent (see Nieuwland
et al., 2020), but it does suggest that the N400 does not chiefly reflect integration.



IIl.  De speer heeftde atleten geworpen
the javelin has the athletes thrown
‘The javelin threw the athletes’

IV.  Despeer werd doorde atleten geworpen
the javelin was by the athletes thrown
‘The javelin was thrown by the athletes’

1.4.2 The P600

The P600 ERP component is a positive deflection in the ERP, with a posterior distribution over the scalp,
usually observed within a time-window of 500-900 ms post stimulus onset. This component was initially
observed in response to syntactic anomalies such as violation of subcategorization constraints (e.g.
Osterhout & Holcomb, 1992) and agreement errors (e.g. Hagoort, Brown & Groothusen, 1993), as well as
in “Garden path” sentences, where an initial structure needs to be reanalyzed (e.g. Osterhout & Holcomb,
1992, Osterhout, Holcomb, & Swinney, 1994; Hagoort, Brown & Osterhout, 1999). Importantly, however,
the P600 was also shown to be elicited in grammatical sentences that do not involve reanalysis. One such
example is the increased P600 amplitude observed when a long-distance dependency is completed (e.g.
Felser, Clahsen, & Munte, 2003; Fiebach, Schlesewsky & Friederici, 2002; Gouvea, Phillips, Kazanina,
& Poeppel, 2010; Kaan, Harris, Gibson, & Holcomb, 2000; Phillips, Kazanina, & Abada, 2005). For
instance, an increased P600 amplitude is measured on the verb “imitated” in a sentence such as (V)
relative to (VI) (Kaan, Harris, Gibson, & Holcomb, 2000). The difference between these sentences is that
at the verb in (V), integration of the filler occurs. In contrast, the processing of the verb in (VI) does not
include this additional process. Thus, there are more integration demands at this point in (V) relative to
(VD).

V.  Emily wondered who the performer in the concert had imitated __ for the audience’s
amusement.
VI.  Emily wondered whether the performer in the concert had imitated a pop star for the audience’s

amusement.

The P600 was also found in “semantic illusion” contexts, namely in syntactically sound sentences that
are semantically anomalous due to thematic role reversal or thematic violations as in example III relative
to IV below (the ”Semantic P600”, see e.g. Chow & Phillips, 2013; Hoeks, Stowe, & Doedens, 2004;
Kuperberg et al., 2007). These and other findings have led to the suggestion that the P600 amplitude
reflects integration difficulty (Brouwer, Fitz, & Hoeks, 2012; Kaan et al., 2000; For further discussion
regarding the functional nature of the P600, also see Chow & Phillips, 2013).

1.5 The current studies

In the current studies (the three published papers included in chapters 2-4 below), I focus on the suggested
distinction between pre-activation and pre-updating, aiming to establish an understanding of the



mechanisms underlying these processes. Here I very briefly outline the research questions and results of
each study.

1.5.1 Predictive pre-updating and working memory capacity: Evidence from event-related
potentials (Ness & Meltzer-Asscher, 2018b)

In this paper we report an ERP experiment, aimed to provide evidence of pre-updating. As discussed
above, pre-updating involves integration of a strongly predicted word into the sentence representation,
prior to the realization of the word in the input. Since the P600 component was suggested to reflect
integration processes, we hypothesized that pre-updating would be reflected in increased P600
amplitude, on a word prior to a highly predictable continuation. Thus, we presented participants with
high and low constraint sentences (presented word-by-word), and examined the ERPs of both the highly
predictable noun in the high constraint context (relative to low constraint), and the verb prior to this noun,
where the strong prediction can be generated. As expected, at the noun we observed decreased N400
amplitude in high relative to low constraint contexts, reflecting facilitation due to the predictability of
the presented noun in the high constraint context. Crucially, on the preceding verb we observed increased
P600 in high relative to low constraint contexts, reflecting, according to our interpretation, additional
integration processes prior to the highly probable word in high relative to low constraint sentences,
presumably due to integration of the predicted noun. Additionally, we tested the participants’ reading
span, a measure aimed to reflect WM abilities. The pre-updating P600 effect was correlated with reading
span, such that individuals with higher reading span demonstrated a larger P600 effect, indicating that
individuals with better WM abilities have a higher tendency to pre-update. These results provide
evidence for pre-updating, and for individual differences in the tendency to pre-update.

1.5.2 Love thy neighbor: facilitation and competition between parallel predictions (Ness &
Meltzer-Asscher, 2021a)

This paper focused on the mechanisms of pre-activation. As mentioned above, we assume, with others,
that multiple predictions are pre-activated in parallel (unlike pre-updating, which is limited to a specific
prediction). Thus, the study reported in this paper was aimed to explore the interactions between
simultaneously activated predictions. The study employed a speeded cloze task (i.e. a sentence
completion task in which participants are instructed to produce a completion out loud as quickly as
possible), looking at the production onset of cloze responses. We began with an exploratory analysis,
using pre-existing data, in order to develop a specific hypothesis about how alternative predictions affect
each other. We then followed up with a replication experiment, for which the analysis (corresponding to
the specific hypothesis) was pre-registered. The results show that production onsets of the modal
response to a sentence (i.e. the most probable completion) are influenced by the strength (cloze
probability) of a not-produced competitor, the second most probable completion. When these two words
are highly related, the stronger the competitor is, the more it facilitates the production of the modal
response (i.e. earlier production onset). However, when the two words (the modal and the competitor) are
relatively unrelated, the stronger the competitor is, the more it delays the production of the modal
response (i.e. later production onset). These findings demonstrate that multiple predictions are pre-
activated simultaneously, affecting the activation level of each other. We provide an account for this
pattern within the interactive activation and competition (IAC) framework, by adapting a computational
model previously employed to account for neighborhood effects on single-word recognition and
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production (Chen & Mirman, 2012). We additionally extend this model to account for previously
observed effects in the speeded cloze task (Staub et al., 2015).

1.5.3 From pre-activation to pre-updating: A threshold mechanism for commitment to
strong predictions (Ness & Meltzer-Asscher, 2021b)

Capitalizing on the pre-updating P600 effect we demonstrated in the study discussed above (1.5.1), we
conducted an ERP study combined with a speeded cloze task, aiming to test the hypothesis that pre-
updating is initiated by an activation threshold mechanism. Participants were presented with high and
low constraint contexts (presented word by word), followed by a blank line prompting them to produce
a completion. We used the specific response produced by the participant in each trial, reflecting the
participant’s strongest prediction in that moment, to analyze the ERPs on a verb prior to the production
prompt. Increased P600 amplitude was observed in high (relative to low) constraint sentences, and this
effect was correlated with reading span, replicating our previous results. Importantly, the pre-updating
P600 effect was observed in high constraint sentences (relative to low constraint) even when the
participant’s strongest prediction in that moment (their produced response) was a low cloze word. These
results support a noisy activation race towards a retrieval threshold as the mechanism for initiation of

pre-updating.
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2 Papers

2.1 Predictive pre-updating and working memory capacity: Evidence from event-related

potentials

Tal Ness and Aya Meltzer-Asscher (2018b)
Journal of Cognitive Neuroscience, 30(12), 1916-1938

Abstract
It was recently proposed that lexical prediction in sentence context encompasses two
qualitatively distinct prediction mechanisms: “pre-activation”, namely activating
representations stored in long-term memory, and “pre-updating”, namely updating the
sentence’s representation, built online in working memory, to include the predicted
content (Lau, Holcomb, & Kuperberg, 2013). The current study sought to find evidence
for pre-updating and test the influence of individual differences in working memory
(WM) capacity on the tendency to engage in this process. Participants read strongly and
weakly constraining sentences. Event-related potentials were measured on the
predictable noun as well as on the preceding verb, where the prediction is generated.
Increased P600 amplitude was observed at the verb in the strongly constraining
sentences, reflecting integration of the predicted upcoming argument, thus providing
evidence for pre-updating. This effect was greater for participants with higher WM
capacity, indicating that the tendency to engage in pre-updating is highly affected by
WM capacity. The opposite effect was observed at the noun, i.e. for participants with
higher WM span, a greater decrease in P600 amplitude in the strongly constraining
sentences was observed, indicating that the integration of a pre-updated word was
easier. We discuss these results in light of previous literature and propose a plausible
architecture to account for the interplay between pre-activation and pre-updating,

mediating the influence of factors such as WM capacity.

1) Introduction

Over the past couple of decades, studies focusing on prediction processes led to an increasingly strong
consensus regarding the role of prediction in sentence processing. It is now widely assumed that in the
course of comprehending a sentence, we do not passively wait for the input and process it as it comes,
but rather constantly engage in some form of anticipatory processing. A classical finding demonstrating
this is the decreased reaction times observed for predictable as compared to unpredictable words in a
sentence (e.g. Ehrlich & Rayner, 1981; Forster, 1981; Schwanenflugel & LaCount, 1988; Schwanenflugel
& Shoben, 1985; Stanovich & West, 1983; Traxler & Foss, 2000). Similarly, the amplitude of the N400
event-related potentials (ERP) component elicited by a word has been shown to inversely correlate with
the word’s cloze probability, meaning that N400 amplitude decreases as the word’s predictability
increases (e.g. Delong, Urbach & Kutas, 2005; Kutas & Hillyard, 1984; Kutas, Lindamood, & Hillyard,
1984; Wilotko & Federmeier, 2012). Interestingly, the amplitude of the N400 is not decreased only for
predictable words. Unpredictable words that are semantically related to a predictable word elicit a
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smaller N400 compared to unrelated words (e.g. Thornhill & Van Petten, 2012), and this is true even for
anomalous words (e.g. Federmeier & Kutas, 1999; Kutas & Hillyard, 1984; Kutas et al., 1984). These
findings indicate that the amplitude of the N400 reflects an architecture that involves pre-activation, i.e.
that a decreased N400 likely reflects easier retrieval of words that were already activated, either due to
spreading activation from the predicted word to related words or due to activation of shared
features/concepts. In addition to “spreading” or shared activation, the activation level of a word,
reflected in its N400 amplitude, is also affected by higher-level prediction processes. This is shown by
findings of N400 sensitivity to factors that influence top-down control, such as predictive validity (e.g.
Lau, Holcomb, & Kuperberg, 2013).

1.1) Pre-activation vs. pre-updating

Although the general notion of prediction is largely accepted in the psycholinguistic literature, the
precise nature of the processes involved, as well as the extent and ubiquity of prediction during sentence
processing, are still under ongoing debate. Recently, Lau et al. (2013) suggested a distinction between
two qualitatively distinct mechanisms of prediction, later referred to as “pre-activation” and “pre-
updating” (Kuperberg & Jaeger, 2016). “Pre-activation” refers to an increase in the activation level of
knowledge stored in long-term memory, i.e. the concept’s representation in the lexicon, due to spreading
activation as well as more controlled prediction processes. In contrast, the term “pre-updating” is used
to refer to the updating of the sentence’s representation built in working memory (WM), to include the
predicted content.

Two different accounts were put forward regarding the relation between pre-activation and pre-
updating. While Lau et al. (2013) assume that pre-activation leads to pre-updating, Kuperberg and Jaeger
(2016) assume the opposite order. To illustrate this, Kuperberg and Jaeger consider the following sentence
fragment: ‘The day was breezy so the boy went outside to fly a ...”. We can hypothesize two possible
processing scenarios occurring after encountering this fragment. One possibility, adopted by Lau et al.
(2013), is that the partial representation of the event (<boy flies>) leads to pre-activation of the lower-
level representation of ‘kite’. This pre-activated lexical representation is then pre-updated, i.e. it enters
WM to be integrated with the sentence’s representation, which in turn affects higher representational
levels, including updating of the event representation (to be <boy flies kite>). The other possibility,
adopted by Kuperberg and Jaeger (2016), is that the partial representation of the event (<boy flies>) is first
pre-updated (to be <boy flies kite>), which then causes pre-activation of the lower-level representation
of ‘kite’. Distinguishing between these accounts is difficult; although they differ in the assumed order
in which the different representational levels are updated, they ultimately lead to very similar
predictions. Here, we adopt the view that pre-activation precedes pre-updating, and that pre-updating
can then “propagate” to higher representational levels.

An important difference between pre-activation and pre-updating is that while the former entails
priming of multiple entities, the latter entails commitment to a specific prediction, which would incur
processing costs if disconfirmed. If no commitment is made about an upcoming word, then processing
difficulty associated with an unexpected word should only depend on this word’s activation level
(correlated by hypothesis with its cloze probability). Indeed, several studies have shown that low-cloze
words elicit similar N400 amplitudes regardless of whether their preceding context is strongly or weakly
constraining. Crucially, however, it was also found that low-cloze words that follow strongly as opposed
to weakly constraining contexts elicit a late anterior positivity, the frontal post-N400-negativity (fPNP).
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This component was argued to reflect an additional cost of prediction failure, exhibited only when the
comprehender committed to a specific prediction (e.g. Brothers, Swaab, Traxler, 2015; Federmeier,
Wiotko, De Ochoa-Dewald, & Kutas, 2007; Ness & Meltzer-Asscher, in press. see Van Petten & Luka,
2012 for areview).

Thus, as opposed to pre-activation, which is graded and can occur to different degrees depending
on prediction strength and specificity, pre-updating is an “all or nothing” mechanism, which compels
commitment. This conjecture stems from the inherent properties of the architectures of long-term
memory and working memory, which are vastly different. While an immeasurable number of
representations is simultaneously stored in long-term memory, the capacity of WM is highly limited (e.g.
“the magical number seven” suggested by Miller, 1956, or “the magic number four”, Cowan, 2010;
Green, 2017) and therefore it is unlikely that many competing predictions can simultaneously be pre-
updated.? Based on the properties of these two different memory systems, we view pre-activation as an
“unavoidable” process that occurs whenever linguistic input is processed. However, only when
activation of some predicted content reaches a certain threshold, this content is pre-updated; at this
threshold the predicted content is, for all intents and purposes, retrieved, and is therefore integrated into
the sentence’s representation in WM. It should be noted that we do not claim that pre-updating is a
mechanism designated for prediction per-se. As any sentence is incrementally processed, each word
undergoes activation, retrieval and integration. The notion of pre-updating, as we see it, merely means
that retrieval can be achieved even without the need to wait for bottom-up activation, when top-down
activation is strong enough to reach the retrieval threshold. In this case, the retrieved content will simply
move on to the following processing stages, i.e. structure building, semantic integration, thematic role
assignment, etc., similarly to a word that had actually appeared in the input (but see Discussion for
potential differences). This retrieval threshold will be more likely reached (prior to the realization of the
word in the input) when the sentence being processed is more constraining (leading to a stronger
prediction) and when predictive validity is high. The threshold could also potentially vary between
individuals, such that for similar prediction strength, different comprehenders would be more or less
likely to pre-update.

The findings mentioned above, demonstrating priming effects in reaction times and in N400
amplitudes, can be explained by pre-activation alone, without the need to appeal to an additional process
of pre-updating. This is also the case for other manifestations of prediction in sentence processing, such
as anticipatory eye movement in the visual world paradigm (e.g Altmann & Kamide, 1999; Boland, 2005;
Kamide, Altmann, & Haywood, 2003). As all of these findings reflect activations of stored
representations, without direct examination of representations built in WM, they can only provide
evidence for pre-activation. Lau et al. (2013) presented findings which they claimed were more relevant
to pre-updating. The authors showed that the N400 effect in word pairs was affected by predictive
validity, manipulated by changing the proportion of related word pairs in the experimental context.
Greater facilitation, reflected by a reduced N400 amplitude, was observed in the context which contained
a larger proportion of related words, thereby encouraging prediction. This finding was suggested by the
authors to indicate pre-updating, under the assumption that high predictive validity leads to pre-updating
of WM representations, and the updated representation in turn affects activations, leading to a greater
relatedness effect, i.e. reduced N400. However, there is no reason to assume that top-down control cannot

2 For discussion of a different approach, see Section 4.5.
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directly enhance or limit the spread of activations, without the mediation of WM representations (see e.g.
Van Berkum, 2009). Therefore, these results do not provide unambiguous evidence in favor of pre-
updating. It should also be noted that the processing of word pairs may differ substantially from sentence
processing, with participants adopting prediction strategies specific to the task (e.g. lexical or semantic
decision to the second word in the pair).

The goal of the current study was therefore to find more direct support for pre-updating by
looking for evidence for integration processes prior to the onset of a highly predictable word in a
sentence, as well as for decreased integration demands when encountering the predicted word. We
hypothesized that these effects would be reflected in the P600 ERP component, which is a measure for
integration processes. The P600 component is a positive deflection in the EEG, with a posterior
distribution over the scalp. This component was initially observed in response to syntactic anomalies
such as violation of subcategorization constraints (e.g. Osterhout & Holcomb, 1992) and agreement errors
(e.g. Hagoort, Brown & Groothusen, 1993), as well as in “Garden path” sentences, where an initial
structure needs to be reanalyzed (e.g. Osterhout & Holcomb, 1992, Osterhout, Holcomb, & Swinney,
1994; Hagoort, Brown & Osterhout, 1999). Additionally, the P600 was shown to be elicited in grammatical
sentences that do not involve reanalysis. Importantly, increased P600 amplitude is observed when a long-
distance dependency is completed (e.g. Felser, Clahsen, & Munte, 2003; Fiebach, Schlesewsky &
Friederici, 2002; Gouvea, Phillips, Kazanina, & Poeppel, 2010; Kaan, Harris, Gibson, & Holcomb, 2000;
Phillips, Kazanina, & Abada, 2005). For example, an increased P600 amplitude is measured on the verb
“imitated” in a sentence such as (la) relative to (1b) (Kaan, Harris, Gibson, & Holcomb, 2000). The
difference between these sentences is that at the verb in (1a), integration with the filler occurs. In contrast,
the processing of the verb in (1b) does not include this additional process. Thus, there are more integration
demands at this point in (1a) relative to (1b).

1. a. Emily wondered who the performer in the concert had imitated __ for the audience’s
amusement.
b. Emily wondered whether the performer in the concert had imitated a pop star for the

audience’s amusement.

The P600 was also found in “semantic illusion” contexts, namely syntactically sound sentences
that are semantically anomalous due to thematic role reversal or thematic violations (the ”Semantic
P6007, see e.g. Chow & Phillips, 2013; Hoeks, Stowe, & Doedens, 2004; Kuperberg et al., 2007). These
and other findings have led to the suggestion that P600 amplitude reflects integration difficulty (Brouwer,
Fitz, & Hoeks, 2012; Kaan et al., 2000; For further discussion regarding the functional nature of the P600,
also see Chow & Phillips, 2013).2

In the current study we adopt the suggestion that the P600 reflects some form of integration,
without committing to a specific characterization of the processes reflected by the P600. In our case, it is
sufficient to assume that any of the processes involved in integrating a word - syntactic structure
building, dependency formation, thematic role assignment, semantic integration, etc. - affects P600
amplitude, in order to hypothesize that pre-updating of a predicted word will be reflected by increased

3 The P600, characterized by a posterior scalp distribution, should be distinguished from the fPNP described
above, indexing the costs of failed prediction.
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P600 amplitude at the point where pre-updating occurs, followed by decreased P600 amplitude when the
already pre-updated word is encountered.

1.2) A reanalysis of EEG data

In order to test the feasibility of finding a measurable P600 difference due to pre-updating, we reanalyzed
EEG data collected for a previous study (Ness & Meltzer-Asscher, in press). The data were collected from
24 participants (14 male), native Hebrew speakers, with an average age of 25.7 (range: 19-37). Eighty-four
experimental sentences were used, with sentence constraints ranging from 53.6% to 100%. For the new
analysis, we divided the sentences such that half were classified as high-constraint and half as low-
constraint (example sentences are provided in Appendix A). The average constraint in the high-constraint
sentences was 89.5% (range: 80% - 100%), and the average constraint in the low constraint sentences was
68% (range: 50% - 80%). The critical word in the sentences was the verb, on which the prediction was
generated. Verbs in the high-constraint and low-constraint conditions were matched on length (p = .799),
frequency (p = .898, corpus: Linzen, 2009) and position in the sentence (p = .906, measured in number of
words). Due to the design of the original experiment, after the critical verb the experimental sentences
continued with either the predicted word, a congruent but unexpected word, or an anomalous word.
Sentences were presented word-by-word in the middle of the screen for 200ms, with a 300ms ISI. For a
more detailed description of the materials, procedure and EEG recording see Ness and Meltzer-Asscher
(in press).

Based on the typical time-window and scalp distribution of the P600, mean amplitudes over 500-
800ms from the verb onset for all centro-parietal and parietal electrodes were entered into a repeated-
measures ANOVA with the factors Constraint (High, Low) and Electrode (9 levels: CP5, CP1, CP2, CPs,
P7, P3, Pz, P4, P8). A main effect of Constraint was found (F (1,22) = 7.05, p = .014), such that verbs in the
high-constraint sentences yielded a larger P600 amplitude than those in the low-constraint sentences.
Grand averaged ERPs at a representative electrode and scalp distribution of the P600 component are

provided in Figure 1.
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Figure 1: Grand averaged ERPs and scalp distribution for the reanalysis results
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These results provide initial evidence for pre-updating, as they indicate that more integration
processes take place at the verb when it has a highly predictable argument (high-constraint), relative to
when there is no highly predictable argument (low-constraint). A caveat to these results is that the critical
word (i.e. the verb), as well as the following words, were not identical between the high- and low-
constraint sentences. Additionally, we could not compare the ERPs to the actual predicted word between
the high- and low-constraint sentences, to test whether its integration is easier when pre-updating had
already occurred at the verb. This was due to the fact that in the original design, the predicted word
appeared in only one third of the trials (which would result in fourteen trials in each condition), and due
to the fact that the predicted word was presented immediately following the verb and its signal would
therefore be contaminated by the P600 effect at the verb.

1.3) The current study
The current study was designed to overcome the limitations of the reanalysis we conducted, as well as
replicate the result observed on the verb. Moreover, as pre-updating involves representations built online
in WM, we hypothesized that the extent to which an individual tends to engage in pre-updating depends
on their WM capacity.

In the present experiment, participants read strongly and weakly constraining sentences in
Hebrew. ERPs were measured on the predictable noun phrase (NP) as well as on the preceding verb.
These two critical words were separated by an additional word, the Hebrew accusative case marker, in
order to make sure that the signal on the NP is not contaminated by effects originating at the verb.
Participants” WM capacity was assessed via a reading span test.

If pre-updating indeed occurs, and is more likely to occur when the prediction is stronger, a P600
effect is predicted on the verb in the strongly constraining sentences, reflecting integration of the
predicted upcoming argument (the following NP). On the NP, an opposite effect is predicted, namely
increased P600 in the low-constraint sentences, reflecting the benefits of pre-updating, i.e. easier
integration of a word that had already been pre-updated. Moreover, if participants with higher reading
span exhibit a higher tendency to engage in pre-updating, then the effects should be greater for these

participants.

2) Methods

2.1) Participants
Participants were 37 Tel-Aviv University students (18 males), all native Hebrew speakers, with an
average age of 25.4 (range: 19-40). Participants were given course credit or paid 60 NIS (~$15) for their
participation. One participant was excluded from the analysis due to excessive artifacts. The
experimental protocol received approval from the Ethics Committee in Tel Aviv University.

2.2) Materials
The materials consisted of 52 sentence pairs. Each pair included a high-constraint sentence and a low-
constraint sentence (based on a cloze probability questionnaire, as detailed below). See Table 1 for an
example set and Appendix B for all materials. The sentences in each pair differed at the beginning but
were identical from the critical words onwards. The critical words were the verb after which the sentence
constraint differed between the conditions, and the NP that followed it. In order to avoid contaminating
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the ERPs measured on the NP by effects stemming at the verb, these words were separated by the word
‘ef, the Hebrew accusative case marker. This case marker does not bear any agreement features, and it
was therefore identical in all sentences and could not provide any indication of the upcoming noun. The
number of words before the verb did not differ between the conditions (p = .890), nor did the length or
frequency of the word prior to the verb (p = .163 and p = .383, respectively). Materials were divided into
two lists according to a Latin square such that each participant saw only one sentence from each pair (i.e.
26 items in each condition, and 52 sentences in total). Presentation order was randomized for each

participant.
Table 1: Example set
Constraint Sentence
Biglal se-ofir lo makiret ha-sifria, ha-safranit azra
since that-ofir not know ACC the-library, the-librarian helped
High lo limco et ha-sefer se-hu haia carix
him to-find ACC the-book that-he COP needed
‘Since Ofir isn’t familiar with the library, the librarian helped him find
the book he needed’
ofir xipes  ve-xipes bemesex saot, aval lo ecliax
L ofir searched and-searched for hours, but not succeeded
ow

limco et ha-sefer Se-hu haia carix
to-find ACC the-book that-he COP needed

‘Ofir had searched for hours, but he couldn’t find the book he needed’

Yes/No question: Was Ofir looking for a book? (Yes)

The critical words (the verb and the NP) are marked in bold. ACC = accusative case, COP = copula.

Cloze probability questionnaires: Two cloze probability questionnaires were conducted. Both included
sentence fragments, and participants were instructed to complete each sentence with the first completion
that comes to mind. In the first questionnaire, the sentences were presented truncated after the verb (i.e.
the presented sentence frame included the verb). This questionnaire included 66 sentence pairs, divided
into two lists such that each participant saw only one sentence from each pair. The order of presentation
was randomized for each participant. A hundred and two participants completed this questionnaire
(average age 25.4, 29 male). Based on this questionnaire, the 52 experimental sets were chosen. The
average constraint in the high-constraint condition was 72.4% (range: 50% - 100%), meaning that on
average, 72.4% of completions provided by participants in the questionnaire were ‘et’ (the accusative
case marker) followed by the most commonly provided noun. The average constraint in the low-
constraint condition was 18.8% (range: 0-50%, again, percentage reflecting ‘et’ + the most commonly
provided noun). When counting completions of the same lexical item whether it was preceded by the
accusative case marker or not, the average constraint in the high-constraint condition was 80.5% and the
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average constraint in the low-constraint condition was 27.3%. Overall, the accusative case mark itself
(with any noun) was predictable in both conditions (high — 87.0%, low — 74.8%).

In the second cloze probability questionnaire, the sentences were truncated before the verb.
Since the verb is a critical word in the experiment (i.e. its ERP is of interest), this questionnaire was aimed
to make sure that the verb’s cloze probability did not differ between conditions, which would lead to an
N400 effect. The questionnaire included the 52 experimental sets, divided into two lists such that each
participant saw only one sentence from each pair. The order of presentation was randomized for each
participant. This questionnaire was also completed by a hundred and two participants, different from the
ones who completed the first questionnaire (average age 24.3, 25 male). The average cloze probability of
the verbs was 0.7% and 1.1% in the high- and low-constraint conditions respectively, with no significant

difference between conditions (p = .595).

2.3) Procedure

Stimuli were presented using the E-prime 2.0 software (Psychology Software Tools, Pittsburgh, PA).
Sentences were presented word-by-word in the middle of the screen for 250ms, with a 350ms ISI. A
comprehension question appeared following 50% of the trials (randomly distributed). Each trial was
preceded by a 1000ms fixation point. After each trial a string of number signs (###) appeared on the
screen and the participant pressed a button to start the next trial. Participants were encouraged to take as
many breaks as needed. Prior to the experiment, participants completed a practice block of five trials.

Reading span test: To asses WM capacity, each participant also completed a reading span test.* The test

was performed following the main experiment or, for a few participants, in a separate session prior to
their participation in the main experiment. The test’s procedure is based on Daneman and Carpenter
(1980), with minor differences. Participants read aloud a series of Hebrew sentences, after which they had
to recall the last word of each sentence. The number of sentences in the series increased from two to six.
Participants had three series in each level, and the last level at which a participant correctly recalled all
words in at least two series was defined as this participant’s reading span (i.e., when the participant failed
to recall a word in two series in the same level the test was terminated and the participant’s reading span
was defined at the prior level). Two practice series (at the two-sentence level) were performed prior to

the test, in which participants could make mistakes and ask questions.

2.4) EEG recording and pre-processing
The electroencephalogram (EEG) was recorded using a BrainVision actiCap system with 32 Ag/AgCl
scalp electrodes attached according to the 10-20 system. Two electrodes were used to monitor EOG,
located at the outer canthi and the infraorbital ridge of the right and left eyes respectively. Electrode

impedances were kept below 5 kQ for all scalp electrodes and below 15Q for the EOG electrodes. During

recording, the EEG was referenced to Fp2 for most participants (the online reference electrode for five
participants was Fp1, for technical reasons). The EEG was then re-referenced offline (for all participants)
to the average of the left and right mastoid electrodes. Data were collected at a 250 Hz sampling rate and

4 Reading span is a limited measure of WM capacity, as it can also be affected by differences in language
proficiency. Participants in the current study were likely rather homogenous in their language proficiency since
they were all mono-lingual Hebrew-speaking university students, which would allow reading span scores to reflect
WM capacity relatively well. However, future studies can disentangle WM capacity from language proficiency,
possibly by using a factor analytic approach (e.g. Kim, Qines, and Miyake, 2017).
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low-pass filtered at 70 Hz. Data were then bandpass-filtered between 0.1 and 30 Hz, and segmented into
1200 ms epochs, including -200 to 1000 ms relative to the onset of the critical word. The 200 ms prior to
the onset of the critical word were used for baseline correction. Trials contaminated by blinks, eye
movements, excessive muscle activity or amplifier blocking were rejected off-line before averaging and
excluded from further analysis (this affected 5.36% of the trials).

2.5) EEG data analysis

Based on the typical time windows of the N400 and the P600, mean amplitudes over 300-500ms and 500-
800ms (respectively) were analyzed. Electrodes were grouped based on their anteriority and laterality
(Anterior - Left: F7, F3, Fp1, FC5, FC7, T1, C3; Middle: Fz, Cz; Right: F8, F4, Fp2, FC2, FCé, T7, C4;
Posterior - Left: P7, P3, O1, CP5, CP1; Middle: Pz, Oz; Right: P8, P4, O2, CP2, CP¢) in order to reduce
the number of comparisons and the familywise error rate (see Luck, 2014) while still allowing to assess
the topography of the effects. Standardized reading span scores were entered to the analyses as a
continuous covariate. This resulted in repeated-measures ANCOVAs with the factors Anteriority
(Anterior, Posterior), Laterality (Left, Middle, Right), and Constraint (High, Low), and the covariate
Span. These analyses were conducted on time windows relative to both the verb onset and the noun onset,
and were followed by separate analyses for anterior and posterior sites (with the factors Laterality and
Constraint, and the covariate Span). The Huyhn-Feldt adjustment for nonsphericity of variance was
applied when the sphericity assumption was violated. In these cases, the corrected p-value is reported
with the original degrees of freedom.

3) Results

3.1) Accuracy
Accuracy for the comprehension questions was significantly above chance for all participants. Mean
accuracy rate was 93.37% (SD: 4.83). Accuracy data were subjected to a repeated-measures ANCOVA
with the factor Constraint (High, Low) and the covariate Span. No significant main effects or interactions

were found.

3.2) EEG
Grand averaged ERPs and scalp distributions of the components are displayed in Figures 2-4. The results
of the different ANCOVAs are provided in Table 2.
Verb
N400: Mean amplitudes over the 300-500ms time window (relative to the verb onset) were entered into a
repeated-measures ANCOV A with the factors Anteriority (Anterior, Posterior), Laterality (Left, Middle,
Right), and Constraint (High, Low), and the covariate Span, followed by separate ANCOV As for anterior
and posterior sites. No main effects or interactions were found.
P600: Mean amplitudes over the 500-800ms time window (relative to the verb onset) were entered into a
repeated-measures ANCOV A with the factors Anteriority (Anterior, Posterior), Laterality (Left, Middle,
Right), and Constraint (High, Low), and the covariate Span. A significant interaction was found between
Anteriority and Constraint (F(1,34) = 4.312, p =.045), as well as between Anteriority, Constraint and Span
(F(1,34) = 6.267, p =.017). To further explore these interactions, separate ANCOV As were performed on
posterior and anterior sites. In the ANCOVA conducted over posterior electrodes, a significant effect of
Constraint was found (F(1,34) = 11.935, p =.001) such that P600 amplitude was higher in the high-
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constraint condition. Additionally, a significant interaction was found between Constraint and Span
(F(1,34) = 5.698, p =.023), such that the P600 effect was grater for participants with a higher span. The
relation between reading span and the P600 effect at the verb is plotted in Figure 5. These effects were
not found in the ANCOVA conducted over anterior electrodes.

Noun

N400: Mean amplitudes over the 300-500ms time window (relative to the noun onset) were entered into
a repeated-measures ANCOVA with the factors Anteriority (Anterior, Posterior), Laterality (Left,
Middle, Right), and Constraint (High, Low), and the covariate Span. A significant interaction was found
between Anteriority and Constraint (F(1,34) = 15.024, p < .001) but not between Anteriority, Constraint
and Span. To follow-up on the two-way interaction, separate ANCOVAs were run on posterior and
anterior sites. In the ANCOVA conducted over posterior electrodes, a significant effect of Constraint
was found (F(1,34) = 19.057, p < .001), such that N400 amplitude was higher in the low-constraint
condition. There was no interaction between Constraint and Span. Neither of these effects was found in
the ANCOVA conducted over anterior electrodes.

P600: Mean amplitudes over the 500-800ms time window (relative to the noun onset) were entered into a
repeated-measures ANCOV A with the factors Anteriority (Anterior, Posterior), Laterality (Left, Middle,
Right), and Constraint (High, Low), and the covariate Span. There was no significant interaction between
Anteriority and Constraint, but we did observe a trend towards a three-way interaction between
Anteriority, Constraint and Span (F(1,34) = 2.883, p = .099). Although this interaction did not reach
significance, we further explored this pattern by conducting separate ANCOVAs over posterior and
anterior sites, since our a-priory hypothesis was about posterior effects (the P600 component). In the
ANCOVA conducted over posterior electrodes, no significant effect of Constraint was found, but there
was a significant interaction between Constraint and Span (F(1,34) = 4.422, p = .043), such that for
participants with higher reading span, there was a greater decrease in P600 amplitude in the high- (relative
to low-) constraint sentences. This effect was not found in the ANCOVA conducted over anterior
electrodes. There was also a significant three-way interaction between Laterality, Constraint and Span
(F(2,68) = 5.57, p = .011), suggesting that the observed P600 was left-lateralized.

To summarize the results, at the verb, a significant effect of Constraint as well as an interaction between
Constraint and Span were found in posterior electrodes in the 500-800ms time window, meaning that
high-constraint sentences elicited an increased P600 amplitude (relative to low-constraint ones), and that
this increase was greater for participants with higher WM capacity.

At the noun, a significant effect of Constraint was found in posterior electrodes in the 300-500ms
time window, with high-constraint sentences eliciting a decreased N400 amplitude (relative to low-
constraint ones). This N400 effect was not affected by WM capacity. Additionally, an interaction between
Constraint and Span was found in posterior electrodes in the 500-800ms time window on the noun,
meaning that for participants with higher reading span, there was a greater decrease in P600 amplitude
in the high- (relative to low-) constraint sentences.
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Figure 2: Grand averaged ERPs and scalp distributions for all participants. Grand averaged ERPs
and scalp distributions of the N400 (300-500ms) and P600 (500-800ms) of the verb and noun for all
participants.
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Figure 3: Grand averaged ERPs and scalp distributions for the high-span group. Grand averaged
ERPs and scalp distributions of the N400 (300-500ms) and P600 (500-800ms) of the verb and noun for high
span participants, with a reading span of 4 or higher (M = 4.33).
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Figure 4: Grand averaged ERPs and scalp distributions for the low-span group. Grand averaged
ERPs and scalp distributions of the N400 (300-500ms) and P600 (500-800ms) of the verb and noun for low
span participants, with a reading span of 3 or lower (M = 2.61).
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Figure 5: Size of P600 effect at the verb as a function of reading span score. The size of the P600
effect is calculated as the difference in mean amplitude between the high and low constraint conditions

over the 600-800ms time window (relative to verb onset), in posterior electrodes. © — single participant,
¢ - average across reading span score

Table 2: Results of ANCOVASs on EEG data

Verb Noun
N400 P600 N400 P600
df F p F p F p F p
Constraint 134 003 866 845 006 1341 .001 181  .187
Constraint*Span 1,34 003 827 212 154 010 .753 3.66 .064
Anteriority*Constraint 1,3 151 227 431 .045 1502 <.001 0.01 921
Anteriority*Constraint*Span 1,34 007 .796 6.27 .017 2.08 .158 2.88 .099
Laterality*Constraint 268 0.62 509 072 491 482 014 224 119

Laterality*Constraint*Span 268 184 175 048 620 356 .038 6.76  .003

Anteriority*Laterality*Constraint 2,68 036 681 036 .662 072 486 4.75 .015

Anteriority*Laterality*

Constraint*Span 268 020 796 0.04 942 069 499 022 772

Verb
N400 P600
Anterior Posterior Anterior Posterior
df F p F p F p F p
Constraint 134 057 455 025 623 281 .103 11.94 <.001
Constraint*Span 134 071 792 000 994 003 876 570 .023
Laterality*Constraint 268 023 796 108 336 056 576 0.73  .486

Laterality*Constraint*Span 268 073 488 258 093 031 .731 041 .668
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Noun

N400 P600
Anterior Posterior Anterior Posterior
df F p F p F p F p
Constraint 134 256 119 19.06 <.001 216 .151 118 .282
Constraint*Span 1,3 030 590 0.72 404 165 .208 442  .043
Laterality*Constraint 268 442 043 310 .064 058 563 6.21  .007

Laterality*Constraint*Span 268 136 264 509 014 424 018 557 011

Factors: Anteriority (Anterior, Posterior), Laterality (Left, Middle, Right), Constraint (High, Low).
Covariate: Span. N400 time window: 300-500 ms. P600 time window: 500-800 ms. The table includes all
results involving the manipulated factor, Constraint (i.e. the main effect and any interaction that includes
Constraint).

4) Discussion

In this study, we looked for evidence in support of the pre-updating process, namely, the integration of
predicted material into the sentence representation in working memory prior to its occurrence in the
input. Our results showed increased P600 amplitude at the verb in the strongly constraining sentences,
and this effect was greater for participants with higher working memory span. We propose that this effect
reflects integration processes prior to the onset of a highly predictable word, thus providing evidence in
support of pre-updating. The benefits of pre-updating were observed on the predictable NP, where
participants with higher reading span showed a greater decrease in P600 amplitude in the strongly
constraining sentences (relative to the weakly constraining sentences), suggesting that the integration of
an already pre-updated word was easier. These effects had the posterior distribution typical for the P600
component. It can be mentioned that a late frontal positivity would not be expected here, as this positivity
is elicited by unexpected words in highly constraining sentences (e.g. Brothers, Swaab, Traxler, 2015;

Federmeier, Wlotko, De Ochoa-Dewald, & Kutas, 2007), and is therefore thought to be related to coping
with disconfirmed predictions (see further discussion of this anterior positivity below).

Additionally, an N400 effect was found at the NP in the low-constraint sentences relative to the
high-constraint sentences. This result replicates the very robust finding that the amplitude of the N400 is
greater for words with low cloze-probability relative to words with high cloze-probability (e.g. Delong,
Urbach, & Kutas, 2005; Kutas & Hillyard, 1984; Kutas, Lindamood, & Hillyard, 1984; Wlotko &
Federmeier, 2012). This N400 effect did not differ between the high- and low-span participants. The fact
that the P600 effects were affected by WM capacity while the N400 effect was not, taken together with
previous literature regarding the different processes reflected by these two components, corroborates the
suggestion that although both pre-activation and pre-updating are expected to occur more often in the
high-constraint condition, we can see two distinct neural responses that behave differently, reflecting the
two distinct processes. The P00 effects being affected by WM capacity is in line with the hypothesis
that pre-updating involves WM representations, while pre-activation occurs in long-term memory.
These results support an architecture whereby what drives the differences due to WM capacity is not a
difference in activation (as this would likely manifest as a difference in N400 amplitude) but rather a
difference in the retrieval threshold which determines the activation level sufficient for pre-updating. As
mentioned in the Introduction, we see pre-updating as a process that is initiated only if the activation of
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the predicted content exceeds a certain threshold. The difference seen in the current study between
participants with different reading spans can be interpreted as an indication that this threshold is
generally lower for participants with a higher WM capacity, since pre-updating is less costly for them.
Such an architecture would result in similar activations for all participants, but different likelihood to
pre-update, in line with the current results.

4.1) Previous studies on the processing of predictive words
Several recent studies have investigated processing at the stage prior to the occurrence of a predictable
word. Li, Zhang, Xia, and Swaab (2017) compared high- and low-constraint sentences in Mandarin
Chinese, looking at the verb preceding a predictable or an anomalous noun. Their results did not show
the P600 effect observed in our experiment, but rather a sustained anterior negativity (SAN) elicited at
the verb, as well as reduced beta power (19-25 Hz). There are several crucial differences between the
current experiment and the experiment of Li et al. that may have led to these different results. The first
and probably most influential difference is that the critical region in the Li et al. experiment consisted of
a verb, followed by a classifier or an adjective, followed by a noun. While the noun was predictable
immediately after the verb, based on a sentence completion questionnaire, the classifier/adjective was
not predictable. This means that in every trial the participant encountered an unpredictable word
immediately following the verb. This was not the case in our study, as the verb in our sentences was
always followed by the Hebrew accusative case marker ‘et’, a function word that was predicted based
on the cloze-probability questionnaire (and possibly even more predictable in the experimental context
as it consistently appeared in all sentences), which was followed by the noun. This allowed participants
in the current study to precisely predict the direct object of the verb (i.e. ‘et’ + noun, forming the NP that
immediately follows the verb), enabling its immediate integration. Another difference between the Li et
al. experiment and ours is that since the authors of the former experiment aimed to also test the
consequences of prediction failure, the critical noun in their experiment was anomalous in half of the
trials, leading to a disconfirmed prediction. It is conceivable that the proportion of disconfirmed
predictions in the experimental context affects participants’ tendency to commit to a prediction by pre-
updating it, namely that if participants repeatedly have to endure the cost of prediction failure they would
become more cautious and avoid pre-updating. Namely, the retrieval threshold that initiates pre-updating
may not only vary between individuals, but also be adjusted via top-down control to adapt to different
situations. In situations with a strong incentive to predict, the threshold would be lowered, leading to
more frequent occurrence of pre-updating. In situations such as Li et al.’s experiment, the threshold
would be raised in order to prevent commitment to prediction which would likely be disconfirmed. This
means that although predicted candidates would still be pre-activated, pre-updating would be less likely
to occur. These differences may explain why no P600 effect was found at the Li et al. study. Moreover,
if participants in that study noticed that they consistently encounter an unpredictable word immediately
after the verb, but that the predictable word may still appear afterwards, then the results may reflect
holding a (not-yet-integrated) prediction that is not expected to be realized immediately. This aligns well
with the suggestion that the SAN, sometimes observed between the filler and gap sites in long-distance
dependencies, is an index of working memory load (e.g. King & Kutas, 1995; Phillips, Kazanina, &
Abada, 2005). Additionally, in Li et al. the influence of WM capacity was not tested. It is possible that
due to random sampling, the participants in that study were on average with lower WM capacity then
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our participants, and as the effects seen in our experiment were driven by the high-span participants, this
could further contribute to the difference in the results between the two studies.

Rommers and colleagues (2017) have also looked at the stage prior to the occurrence of a
predictable word. They performed a reanalysis of data from a study comparing high- and low-constraint
sentences, ending with the most predictable word or with an unexpected word (Federmeier et al., 2007).
While in the original study, ERPs of the final word were analyzed, the new analysis focused on the time-
frequency domain, looking at the final word as well as a time-window prior to its onset. Similar to Li et
al., Rommers et al. also found an effect of constraint in the time-frequency domain prior to the predicted
(or unexpected) word. However, the results of Rommers et al. show a decrease in alpha power (8-12 Hz),
rather than in beta power, in the high-constraint sentences. These inconsistent results highlight the fact
that in investigating predictive processes we must carefully consider factors that are likely to affect the
nature of predictions, such as predictive validity within the experimental context (i.e. the proportion of
trials in which predictions are disconfirmed), the immediacy of the predicted content, etc.

Fruchter and colleagues (2015) conducted a MEG experiment investigating processing of the
adjective in adjective—noun phrases, when the adjective was predictive of the upcoming noun to different
degrees (e.g. ‘stainless’ is highly predictive of the noun ‘steel’, whereas ‘important’ is not predictive of
any particular noun). They found greater activity in the left middle temporal gyrus for highly predictive
adjectives, and a significant interaction in the same area between adjective predictivity and the frequency
of the expected noun, such that higher noun frequency led to decreased activity when the adjective was
very predictive. We believe that this interaction with the noun’s frequency indicates that the effect found
in that experiment is more likely to reflect pre-activation then pre-updating, as pre-activation is affected
by lexical properties of the word being activated, while pre-updating occurs after the word has already
been retrieved (i.e. fully activated) and is therefore not expected to be affected by the lexical properties
of the word.

To test whether lexical properties of the predicted words also underlie the P600 effect seen on
the verb in our experiment, we performed a post-hoc by-items correlation analysis between the log
frequency of the predicted word (taken from the corpus of Linzen, 2009) and the average amplitude of
the P600 effect on the verb (defined as the difference between the high- and low-constraint conditions, in
the 500-800ms time-window, in the 9 centro-parietal and parietal electrodes). No significant correlation
was found (Pearson’s r = .076, n = 52, p = .594). We acknowledge that this is a null result and therefore
no strong conclusions can be drawn from it. However, this result is compatible with our conjecture that

pre-activation, but not pre-updating, would be affected by lexical properties of the predicted word.

4.2) Individual WM differences and the P600
In the current study, the P600 effects associated with pre-updating were greater for participants with
higher reading span, indicating that participants with higher WM capacity are more likely to engage in
this process. A couple of previous studies found that the P600 component was affected by individual
differences in WM capacity. Nakano and colleagues (2010) manipulated the first NP in simple SVO
sentences such that the verb following it would either be plausible, implausible due to world knowledge,
or in violation of thematic requirements (i.e. an inanimate subject when the verb requires an animate
one). Their results showed that violation of world knowledge led to a similar N400 effect regardless of
WM capacity. However, thematic violations led to distinctly different responses in the low- and high-
span groups. An N400 effect (see discussion in the next subsection) was only observed in the low-span
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group, while a P600 effect was observed in the high-span group. The P600 effect in the high-span group
may indicate that participants in this group made predictions regarding the upcoming verb based on the
subject’s properties (i.e. its inanimacy), and therefore had greater difficulty integrating a verb requiring
an animate agent.

Vos and Friederici (2003) showed that in locally ambiguous sentences, disambiguation towards
the less expected syntactic structure elicits a P600 effect at the disambiguating word only for participants
with high WM capacity. This effect may indicate that high-span participants had to perform a syntactic
reanalysis when the more predictable structure was incorrect since they had made structural predictions
prior to the disambiguating word. One possible commonality between the findings in the two studies is
that differences in the P600 component between high- and low-span participants tend to arise when the
cause of the P600 effect is not syntactic difficulty per se (i.e. a complex or ungrammatical structure) but
rather difficulty that stems from an incorrect prediction (albeit this would not necessarily be the case for
all effects of WM capacity on the P600 component, see Kim, Oines, & Miyake, 2018). The cause of such
differences may therefore be increased engagement in predictive processing by individuals with high
WM abilities, stemming from the fact that these individuals have the available resources needed for the
prediction itself, as well as sufficient resources to endure the costs incurred in the case of a contradictory

input.

4.3) Individual WM differences and the N400

Several studies have tested the influence of individual differences in WM capacity on the N400
component. For example, Van Petten and colleagues (1997) compared the use of lexical context and
sentence-level context by participants with low-, mid- and high-WM capacity. Pairs of associated or
unassociated words were embedded in congruent and incongruent sentences. Similar N400 effects for
participants with low-, mid- and high-WM capacity were observed when comparing associated and
unassociated word pairs, but the contrast between unassociated word pairs in congruent and incongruent
sentences revealed a significant N400 effect only in participants with mid- and high-WM capacity. These
results were interpreted as indicating that WM capacity affects the degree to which purely sentence-level
context is used for prediction, but not the degree to which lexical context is. A more qualitative difference
in ERP responses of participants with high- and low-WM capacity was shown by Nakano and colleagues
(2010). As explained in the previous subsection, in this experiment, thematic violations elicited an N400
effect only in the low-span group, while a P600 effect was observed in the high-span group. World
knowledge violations led to similar N400 effects in both groups.

The generalization that seems to emerge from these two studies is that the amplitude of the N400
is not affected across the board by individual differences in WM capacity. Rather, specific types of
information (i.e. sentence context, thematic requirements) can be differentially used for pre-activation
by readers with higher or lower working memory span, leading to differences in the N400 effect. In
contrast, effects that stem from lexical context are not affected by WM capacity. We propose that this is
consistent with the fact that in the current experiment the N400 effect did not differ between the two
participant groups. This is so since in our materials, the decrease in the amplitude of the N400 in the high-
constraint sentences could have originated solely from their lexical content, facilitating retrieval of the
predicted word via spreading activation. To test this proposal, we conducted a questionnaire in which
participants were given lists of words, with each list containing only the content words of one

experimental sentence, randomly ordered (i.e. not in the same order as in the original sentence).
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Participants were asked to read each list and provide the first association that comes to mind. The results
of this questionnaire showed that the percentage of participants providing the experimental critical NP
as an association for the word list was significantly greater in the high-constraint sentences then in the
low-constraint ones (the average percentage was 3.4% and 37.6% for the low- and high-constraint
sentences respectively, £(52) = 10.52, p < .001). We do not claim that these results indicate that in our
experiment only lexical context was used for prediction and sentence-level context was ignored.
However, the results do indicate that an N400 effect would be expected in low-span participants even if
these participants relied mostly (or only) on lexical context for prediction.

4.4) Pre-updating and prediction failure

As mentioned in the Introduction, pre-updating entails some form of commitment to a prediction.
However, the integration carried out during pre-updating may not be identical to the integration
occurring upon actually encountering a word in the input, which includes building syntactic structure,
assigning thematic roles, integrating the semantic content of the word, etc. If the integration of a
predicted word was identical to that of an actual word, disconfirming a pre-updated prediction would
lead to a bona fide reanalysis. On the other hand, if the integration of a predicted word is tentative, or not
as complete as the integration of an actually encountered word, then disconfirmation of such prediction,
though still costly, would not entail a typical reanalysis.

Previous ERP studies have shown that a congruent-unexpected word that appears instead of a
highly predictable word elicits a frontal positivity termed the “frontal post-N400 positivity” (e.g. Delong,
Urbach, Groppe, & Kutas 2011; Federmeier, Wlotko, De Ochoa-Dewald, & Kutas, 2007; Ness & Meltzer-
Asscher, in press). The frontal distribution of this component is distinct from the distribution of the P600
that is commonly elicited when a syntactic reanalysis is performed (e.g. Osterhout, Holcomb, & Swinney,
1994; Hagoort, Brown & Osterhout, 1999), and it was suggested to reflect discourse revision (i.e.
increased difficulty in updating a context after it was already wrongly updated, Brothers, Swaab, &
Traxler, 2015) or inhibition of the falsely predicted word (Ness & Meltzer-Asscher, in press). The fact that
a frontal positivity rather than a P600 is elicited in such cases may indicate that a pre-updated prediction
has a different status then an actually encountered word, displaying tentative integration which can more

easily be undone.

4.5) An alternative approach — Surprisal and Entropy reduction
Throughout the paper, the hypotheses and the interpretation of the results were framed under the
assumption of serial parsing; however, our results can also be conceptualized in the framework of
parallel and probabilistic parsing, which relate processing difficulty throughout a sentence to complexity
matrices reflecting the amount of information conveyed in each word. One common matrix of this kind
is Surprisal, reflecting the probability of a word given the preceding words in the sentence (Hale, 2001,
Levy, 2008). Many studies have shown that greater surprisal is associated with increased processing
difficulty (e.g. Boston, Hale, Kliegl, Patil, & Vasishth, 2008; Demberg & Keller, 2008; Frank, Otten,
Galli, & Vigliocco, 2015; Smith & Levy, 2013). Another relevant matrix is Entropy reduction. Entropy
reflects the degree of uncertainty regarding what is being conveyed, and it is therefore high when many
possible outcomes have similar probabilities, and lower when there is a very probable outcome. As each
word is encountered, it affects expectations and the probability distribution changes. The degree to which
a given word reduces uncertainty (i.e. reduces entropy) represents the amount of information gained
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(Hale, 2003). Processing more information incurs greater processing difficulty, and indeed, studies have
shown that greater entropy reduction leads to increased reading times, independently of the contribution
of surprisal (Frank, 2013; Linzen & Jaeger, 2016; Wu, Bachrach, Cardenas, & Schuler, 2010. See Hale,
2016 for areview).

We can now consider our materials in light of these findings. At the verb, cloze probability did
not differ between conditions, and therefore surprisal was similar. However, while entropy was always
relatively high prior to the verb, certainty regarding the noun was much greater in the high-constraint
condition than in the low-constraint one. This means that entropy reduction at the verb was greater in the
high-constraint condition, which should lead to greater processing difficulty. At the noun, cloze
probability was greater in the high-constraint condition than in the low-constraint one. Therefore,
surprisal was lower in the high-constraint condition, which would lead to decreased processing difficulty
(relative to the low-constraint condition). Regarding entropy reduction at the noun, while, as explained
above, entropy prior to the noun was lower in the high-constraint condition than in the low-constraint
one, entropy following the noun was likely high in both conditions (as in both conditions there was no
predicted continuation for the sentence after the noun). This means that at the noun there was no entropy
reduction in any condition (entropy either increased or did not change, both considered the same in terms
of processing difficulty, see Hale, 2016; Lowder et al., 2018). To recap, in the high- (relative to the low-)
constraint condition, increased processing difficulty would be predicted at the verb due to entropy
reduction (surprisal being similar in both conditions), and decreased processing difficulty would be
predicted at the noun due to lower surprisal (entropy reduction likely being similar in the two conditions).
These predictions are in line with our results, as the increased P600 on the verb in the high-constraint
condition may be taken to index greater entropy reduction, and the decreased N400 and/or P600 on the
noun in the high-constraint condition may be taken to reflect lower surprisal.

Additional work is needed in order to provide an explanation within this framework as to why
the observed P600 effects depended on WM capacity. Possibly, this can be done by assuming that
individuals with higher WM capacity have a larger “beam size”, namely they consider more possible
continuations, which would vary the Entropy experienced by different individuals. Additionally, making
predictions regarding the specific ERP components which reflect surprisal and entropy reduction is not
trivial and further research is needed to account, within this framework, for why we see a P600 effect at
the verb, while at the noun we see both N400 and P600 effects (e.g. see Cho et al., 2018 for a mechanistic
account for surprisal. Such accounts can provide a means to make predictions regarding timing and

neural activity).

4.6) Prediction mechanisms in sentence processing
Figure 6 summarizes the proposed prediction mechanisms during sentence processing, and how they are
incorporated within the processing stages of a word appearing in sentence context. At every stage during
sentence comprehension, multiple representations in long-term memory are pre-activated. The
activation level of a word is affected by the previous context, as well as by the lexical properties of that
word. Top-down control may also limit or enhance activations, mediating the influence of factors such
as predictive validity, task demands, etc. Once the activation level of a certain word had passed a retrieval
threshold, it is regarded as retrieved, i.e. it can be integrated into the representation being built in WM.
This threshold may differ between individuals and it may also be adjusted by top-down control, adapting
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to how beneficial commitment to predictions is in a given situation (e.g. due to task demands, noisy input,
predictive validity).

This means that top-down control can affect prediction in two ways: first, by limiting or
enhancing activation levels, which enables differential influence on different representations. It is
conceivable that this kind of adjustment would take place when a certain information type is more or less
reliable in a given situation. For example, if when reading a fantasy book animacy requirements are often
violated, then animacy may be less heavily relied upon for prediction and therefore words that violate an
animacy requirement may be predicted and activated. Second, top-down control can affect prediction by
raising or lowering the retrieval threshold, which enables a more general influence on the likelihood of
any predicted content to reach retrieval prior to its realization in the input. This kind of adaptation will
take place for example when predictive validity is low, meaning that predictions are often violated and
therefore forming strong predictions is not beneficial.

Ifno word had passed the retrieval threshold prior to the realization of the next word in the input,
then bottom-up activation causes retrieval of the word, and it is then integrated into the representation in
WM. If a certain word did pass the threshold prior to the realization of the next word in the input, this
word would then be pre-updated, meaning that a tentative integration would be initiated, until the pre-
updated word can be matched against the input. At this point, if the input matches the pre-updated word,
integration is finalized. This stage would be less demanding than the integration of a word that had not
been pre-updated. If the input does not match the pre-updated word, then the falsely predicted word is
inhibited in order to enable integration of the actual input. This mismatch between prediction and input
may also be a valuable trigger for learning mechanisms, improving future predictions.

Context
up to
word N

Word
Frequency
) Pre-activation:
Semantic Retrieval:
association Activation of multiple
—>»| long-term memory A » Full activation, which > Full integration
representations to ] passes a (variable)
varying degrees threshold
Pre-apdating: Matching between |
Tentative Integration prediction and input
Top-down ' !
influences ¢ ! Inhibition of the
e e  OF 4mmmmmmm e | falsely predicted word
! : (and possibly learning
bar
Rapdgm Realization of word N+1 in the input ECHEEE)
variation
-

Figure 6: An outline of prediction mechanisms within the processing stages of a word

A question remains regarding the specificity of the predicted content that can be pre-updated. In the
current study, the strongly constraining sentences led to a high likelihood that a specific word would
appear. However, sentences can be constructed in a way that will lead to a high likelihood of occurrence
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not of a specific word, but of a word with a specific semantic or grammatical feature (e.g. animate,
human, location, liquid substance, etc.; see Szewczyk & Schriefers, 2013). It is therefore possible that
such features can also be pre-updated, even in the absence of prediction of a specific word. Whether or
not this is plausible depends on how knowledge is stored in long-term memory, namely whether a feature
can be highly activated when no specific word is highly activated, and on how representations are built
in working memory, namely whether they can be partial and contain features of an upcoming word
without the actual word. These questions closely relate to the suggestion by Kuperberg & Jaeger (2016),
that pre-updating can occur at different representational levels. The P600 effects found in the current
study provide a valuable tool for exploring this issue further.
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2.2 Love thy neighbor: facilitation and competition between parallel predictions

Tal Ness and Aya Meltzer-Asscher (2021a)
Cognition, 207, 104509

Abstract

Ample evidence suggests that during word recognition and production, simultaneously
activated lexical and sublexical representations interact, demonstrating varied patterns
of facilitation and inhibition in various tasks and measures. A separate line of research
has led to a growing consensus that prediction during sentence processing involves
activating multiple possible predictions. However, very little is known about the nature
of the interactions between parallel predictions. The current study employed a speeded
cloze task to probe competition between simultaneously activated predictions. We
focused on the modal response (the most probable completion for a sentence) and its
strongest competitor (the second most probable completion). Examining production
latencies of the modal response, the results showed an interaction between competitor
strength and the semantic relatedness between the competitor and the modal: when the
two were related, the stronger the competitor was, the more it facilitated production;
however, when the two were unrelated, the stronger the competitor was, the more
inhibition it caused. These results contrast with the pattern observed for the influences
of near and distant semantic neighbors on word recognition and production. However,
we show that when the different nature of the tasks is taken into consideration, these
patterns of interaction between parallel predictions can be accounted for by the
interactive activation and competition (IAC) model used to account for previous
neighborhood effects (Chen & Mirman, 2012).

1) Introduction

One of the most basic processes necessary for language comprehension and production is lexical
selection, namely, retrieval of a word from the mental lexicon while other words or concepts are also
activated. Over the years, many studies investigated this process, leading to the general conclusion that
the difficulty of lexical selection is highly dependent on how many other words are simultaneously
activated, and to what degree. Notably however, although the influence of simultaneously activated
words on lexical selection was demonstrated in numerous studies, the observed effects are not uniform,
i.e. simultaneously activated words can either facilitate or inhibit retrieval. For example, many early
studies showed reduced reaction times for words with many orthographic neighbors, relative to words
with fewer neighbors, in tasks such as naming and lexical decision (e.g. Andrews, 1989, 1992; Forster &
Shen, 1996; Johnson & Pugh, 1994; Sears, Hino, & Lupker, 1995). An orthographic neighbor is a word
that differs from the target word by a single letter. When attempting to retrieve the target word, these
neighbors are also activated due to their orthographic similarity to the target word. The studies above
show that the more neighbors (of this type) are activated, the more they facilitate retrieval of the target
word. However, orthographic neighbors were also shown to cause inhibition: when orthographic
neighbors are more frequent than the target word, they inhibit its retrieval (e.g. Davis, Perea, & Acha,
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2009; Ferraro & Hansen, 2002; Grainger, 1990; Grainger & Jacobs, 1996; Grainger, O’Regan, Jacobs, &
Segui, 1989, 1992; Grainger & Segui, 1990). Additionally, transposed letter neighbors (i.e. words created
from the target word by switching the positions of two adjacent letters) also inhibit retrieval (e.g. Acha
& Perea, 2008; Andrews, 1996; Johnson, 2009). Similarly, phonological neighbors (i.e. words that are
phonologically similar) can exert either facilitation or inhibition (see Dell & Gordon, 2003; Mirman,
Kittredge, & Dell, 2010). Thus, although words that are activated due to similarity to the target word
influence the difficulty of lexical selection, this influence may be facilitatory in certain circumstances
and inhibitory in other.

1.1) Semantic neighborhood and semantic relatedness

Semantic neighbors are words that are related to the target word, sharing semantic features with it. Much
like orthographic neighbors, semantic neighbors are activated with the target word due to their similarity,
and therefore they also affect lexical retrieval. Some studies have shown that words with higher semantic
neighborhood density, i.e. more semantic neighbors, are retrieved faster, both in recognition tasks
(lexical decision and semantic decision) and production tasks (picture naming) (Buchanan, Westbury, &
Burgess, 2001; Duiabeitia, Avilés, & Carreiras, 2008; Locker, Simpson, & Yates, 2003; Siakaluk,
Buchanan, & Westbury, 2003; Yates, Locker, & Simpson, 2003). Importantly, however, later studies have
shown that this facilitation is driven by distant semantic neighbors, i.e. neighbors that share few semantic
features with the target word (Mirman, 2011; Mirman & Magnuson, 2008). Near semantic neighbors, on
the other hand, cause the opposite effect, i.e. neighbors which share many semantic features with the
target word cause inhibition, rather than facilitation (Fieder, Wartenburger, & Rahman, 2019; Mirman,
2011; Mirman & Magnuson, 2008).

These results suggest that high semantic relatedness between simultaneously activated words
leads to competition between these words, hindering lexical retrieval. In apparent contradiction to this
conclusion, several sentence processing studies suggest that this may not always be the case. The
processing of an unexpected word within a sentence context was shown to be facilitated when it is
semantically related to the predicted word (e.g. Brothers, Swaab, & Traxler, 2015; Federmeier & Kutas,
1999; Frisson, Harvey, & Staub, 2017; Luke & Christianson, 2016). For example, Federmeier & Kutas
(1999) found that in a sentence such as ‘The tourist in Holland stared in awe at the rows and rows of color.
She wished she lived in a place where they grew ...’, facilitation was observed for the unexpected word
‘roses’ relative to the unexpected word ‘palms’ (reflected in this case in decreased amplitude of the N400
event-related potentials component), since ‘roses’ is more semantically related to the predictable word
‘tulips’. Assuming that this facilitation stems from pre-activation of the semantically related predicted
word, this suggests that semantic relatedness between simultaneously activated words can also cause
facilitation. Note that the word ‘tulips’ is closely related to ‘roses’ and is thus comparable to a near
semantic neighbor, shown to exert inhibition in recognition and naming studies. ‘Tulip’ is less related to
‘palms’ and is thus comparable to a distant semantic neighbor, shown to exert facilitation in these tasks.
Nonetheless, the results of the sentence processing studies mentioned above are in the opposite direction,
i.e. greater relatedness between the unexpected word and the predicted word causes facilitation. In line
with these results, Roland, Yun, Koenig, and Mauner (2012) have also shown that reaction times in a self-
paced plausibility judgement task (i.e. self-paced stops-making-sense task) were faster for a word the
higher its average relatedness to alternative completions for the sentence was.
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A crucial difference between the experiments in which close relatedness between activated
words caused inhibition and the experiments in which it caused facilitation is that in the latter, the
activations were induced by a sentence context. One of the main aims of the current study is therefore to
further examine the interaction between simultaneously activated words during sentence processing,
assessing the influence of semantic relatedness in this domain, and explaining why it may differ from
typical semantic neighborhood effects in single-word tasks. Additionally, previous studies all examined
the processing or production of a word that appeared in the input (either written, in isolation or in
sentence context, or a picture of the word). In contrast, the current study focuses on interactions between
parallel predictions induced by a sentence context that does not include the predicted words,
manipulating the strength of the different predictions and the degree of relatedness between them.
Admittedly, alternative completions to the same sentence are always somewhat related to one another,
being induced by the same context. However, sentences vary greatly in how semantically related their
possible completions are. For example, the most probable completions for sentence (1) are “popcorn’ and
‘candy’, which are highly related and share many semantic features (e.g. edible items, snacks, treats,
tasty, considered unhealthy, etc.). On the other hand, the most probable completions for sentence (2) are
‘wheel” and ‘mattress’, which are not very related and do not share many semantic features other than
the fact that they can both be inflated (in some cases). Thus, the related predictions ‘popcorn’ and ‘candy’,
and the unrelated predictions ‘wheel” and ‘mattress’, can be considered as the equivalents of near and
distant semantic neighbors, respectively.

(1) Before the movie even started, the kids started to eat the _
C. Popcorn
D. Candy
(2) Before the trip, Yoel looked for the pump in order to inflate the ____
C. Wheel
D. Mattress

In the current study we therefore test whether semantic relatedness between predictions during sentence
processing elicits similar or opposed effects to the effects observed in single-word semantic

neighborhood studies.

1.2) Parallel predictions and the speeded cloze task
Although, as discussed above, extensive research demonstrated influences of simultaneous activations
on lexical selection, this phenomenon was hardly studied in regards to prediction during sentence
processing. A recent study provides initial evidence for the influence of parallel predictions on one
another. Staub and colleagues (2015) employed a speeded cloze task in order to assess the influence of
cloze probability and sentence constraint on production onsets. Participants were presented with the
beginning of a sentence (presented word by word at a fixed rate), and were instructed to produce a
completion as quickly as possible. As in the common (non-speeded) cloze task, the cloze probability of
each word was defined as the proportion of participants who produced this word as a completion for the
sentence, reflecting how predictable the word is given the sentence; and sentence constraint was defined
as the cloze probability of the sentence’s most common response, reflecting how strong of a prediction
the sentence encourages. The most probable completion of the sentences is termed the modal response.
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Not surprisingly, the results showed that words with higher cloze probability (i.e. more predictable
words) were produced fasted. This result indicates that the more the context activates a word, the faster
itis retrieved and produced as a cloze response. More relevantly, the results also showed that words with
low cloze probability are produced faster in high constraint versus low constraint sentences. Namely, a
low cloze probability word is produced faster when the sentence has a highly probable alternative
completion, compared to when it does not. As explained in Staub et al. (2015), these results suggest that
multiple possible cloze responses are activated simultaneously, racing towards a retrieval threshold.
Since the activation of each possible response, induced by the sentence context, is in correlation to its
predictability (and therefore its cloze probability), the modal, most probable, response would most often
reach the threshold first. However, due to random noise in the activation levels of each possible response,
a less probable word can reach the threshold first. This means that when a low cloze word is produced
even though a high cloze alternative is available, the activation of this low cloze word had to be
exceptionally high in that moment (due to noise) relative to what is expected based on its probability.
Otherwise, the high cloze word, which receives strong activation from the sentence, would have reached
the threshold first, and the low cloze word would not have been produced. This is what gives rise to the
influence of constraint on the onset of low cloze responses.

Notably, while Staub et al.’s (2015) finding that the strength of an alternative prediction can
influence the onset of the ultimately produced response indicates that parallel predictions are
simultaneously activated , these results can be explained without applying to direct influence of the
activation of one response on the activation of another. Namely, the possible cloze responses can
accumulate activation independently of one another, and the influence of constraint on the onset of a low
cloze response merely stems from the fact that we can only measure production onset for a certain word
when it is the first to reach retrieval threshold. A low cloze word has to be retrieved exceptionally fast in
order for the modal, which has on average more activation, not to be produced. Thus, the influence of
constraint on low cloze responses does not necessitate a direct interaction between the simultaneously
activated predictions. Indeed, independent accumulation of activations is assumed in the model proposed
by Staub et al. (2015) to capture these results (see section 4.1.2 for further consideration of this model).
Staub el al. (2015) have also tested whether the effect of constraint on production onset of low cloze
responses, described above, can be attributed to semantic relatedness to the modal response. Potentially,
the shorter production onset for low cloze responses in high constraint relative to low constraint contexts
can be due to low cloze responses’ relation to the highly probable word in the former. Looking at
production onsets of non-modal responses, the authors found that although the effect of constraint was
unlikely to be explained in full by semantic relatedness, semantic relatedness to the modal response did
have an effect on the production onset of non-modal responses, such that words that were more related
to the modal response were produced faster. This result is in line with the results observed in sentence
processing studies (e.g. Brothers, Swaab, & Traxler, 2015; Federmeier & Kutas, 1999; Frisson, Harvey,
& Staub, 2017; Luke & Christianson, 2016; Roland, Yun, Koenig, & Mauner, 2012), and in the opposite
direction to semantic neighborhood effects observed in single-word tasks (Fieder, Wartenburger, &
Rahman, 2019; Mirman, 2011; Mirman & Magnuson, 2008). Importantly, this effect of semantic
relatedness in the speeded cloze task was only assessed with regards to production onset of non-modal
responses. This means that in the trials from which these production onsets were taken, the activation
levels within the participant’s mind did not correspond to the cloze probability distribution (presumably

due to random neural noise), since otherwise the modal response would ‘win the race’ towards the
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retrieval threshold and the non-modal response would not have been produced. In order to provide an
explanation that will reconcile the opposed influences of semantic relatedness in the different tasks, it is
necessary to consider the underlying interactions between the simultaneously activated words, which is
not possible when looking specifically at trials in which the underlying activations are atypical and
unknown. In the current study we therefore focus on trials in which the modal response is produced,
allowing us to provide additional insights by modeling the underlying activations.

1.3) The current study

The main aims of the current study were twofold: (i) to investigate the influence of relatedness between
parallel prediction on lexical selection; and (ii) to find direct evidence for the influence of the activation
of parallel predictions on one another. To achieve these goals, we employed a speeded cloze task, similar
to Staub et al. (2015). We begin with an exploratory analysis of data from a previous experiment, followed
up with a pre-registered confirmatory replication experiment. We additionally conduct an analysis as in
Staub et al. (2015), aimed to provide an additional replication of their findings. Finally, we conduct
simulations using Chan and Mirman’s (2012) interactive activation and competition (IAC) computational
model (see Discussion), adapting it to account for cloze response generation. We show that it is possible
to account for the results of the current study, as well as the results of Staub et al. (2015), within the same
model that accounts for previously observed neighborhood effects in single-word tasks.

In the current study, we focused on the production onset of the modal response, i.e. the most
probable completion provided by participants in the cloze task. We asked whether the modal production
onset is influenced by the strength (i.e. cloze probability) and the relatedness of its strongest competitor,
i.e. the second most probable completion. If indeed alternative predictions are activated simultaneously,
interacting with each other, then we should see an influence of the relatedness between the produced,
modal word and its competitor. Since this influence stems from the activation of the competitor, it should
be stronger the higher the competitor’s cloze probability is. More specifically, if the influence of
relatedness is similar to semantic neighborhood effects in single-word tasks, then simultaneously
activated words should cause inhibition when they are highly related to the target word, and facilitation
when they are remotely related. If this is the case, then when the modal and the competitor are highly
related (i.e. the equivalent of near neighbors), the higher the competitor’s cloze probability, the more
inhibition it would cause, leading to increased production latencies for the modal word; when the modal
and the competitor are unrelated (or remotely related, i.e. the equivalent of distant neighbors), on the
other hand, the higher the competitor’s cloze probability, the more facilitation it would cause, leading to
decreased production latencies. However, if the influence of relatedness is in the opposite direction then
that observed for semantic neighborhood effects, as exemplified in sentence processing studies (e.g.
Brothers, Swaab, & Traxler, 2015; Federmeier & Kutas, 1999), then when the modal and competitor are
highly related, the higher the competitor’s cloze probability the more facilitation it would cause, leading
to decreased production latencies of the modal word; conversely, for unrelated modals and competitors,
the higher the competitor’s cloze probability, the more inhibition it would cause, leading to increased
production latencies.

2) Exploratory analysis of previous data
In a previous study (Ness & Meltzer-Asscher, submitted), a speeded cloze task was combined with EEG

measurement, in order to study the pre-updating mechanism (Kuperberg & Jaeger; 2016; Lau, Holcomb,
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& Kuperberg, 2013; Ness & Meltzer-Asscher, 2018). We re-analyzed the existing behavioral data from
this study.

2.1) Materials and procedure
The materials and the data can be found at:
https: //0sf.io/viwds/tview_only=6758eela8b3f4e2b993b48a3écbb8afc. Forty-eight native Hebrew

speakers participated in the experiment. The materials consisted of 156 Hebrew sentence beginnings,
varying in constraint. The sentence fragment was presented word-by-word in the middle of the screen at
a fixed rate (SOA = 600 ms), followed by a blank line prompting participants to produce a completion.
Participants were instructed to provide the first completion that comes to mind, as quickly as possible.
The sentences were composed in pairs such that each pair included a high constraint sentence and a low
constraint sentence (based on a cloze probability questionnaire), in order to control for lexical material,
but constraint was treated as a continuous variable in the current analysis (see Table 1 for example
sentences). Presentation order was randomized for each participant. Sentences from the same set were

separated by at least 50 trials.

Table 1: Example sentences

Constraint  Sentence frame

Biglal Se-ofir lo makir et ha-sifria, ha-safranit azra lo limco et
High since that-ofir not know Acc the-library, the-librarian helped him to-find Acc

7

‘Since Ofir isn’t familiar with the library, the librarian helped him find __

ofir xipes ve-xipes bemesex Saot, avallo ecliax limco et
Low ofir searched and-searched for hours, but not succeeded to-find Acc __

‘Ofir had searched for hours, but he couldn’t find __’

2.2) Analysis
For each item, we identified the most probable completion (the modal) and the second most probable
completion (the competitor). We assessed the relatedness between these two possible completions for
each item via a relatedness rating questionnaire, in which 30 participants (different from the ones
participating in the main experiments) were asked to rate, on a 7-point scale, how related the two words
were. Ratings were normalized within participant and the average relatedness rating was calculated for
each word pair.

Production onset was marked using DeepWDM, a recurrent neural network for word duration
measurement (Goldrick et al., 2018). A coder then listened to each of the recordings, transcribed the
production, and corrected the marked onset when needed. Trials with speech errors, repairs or filled
pauses were excluded (1.7% exclusion). Singular/plural and masculine/feminine forms of the same noun
were collapsed by coding each noun as its singular-masculine form (e.g. ‘shirts’ and ‘shirt’ where
counted as the same response). When the produced response consisted of more than one word, only the
first word was coded unless the words formed a compound. Since the presented sentence fragments
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always ended with the Hebrew accusative case marker ‘et’, which only precedes definite nouns, the vast
majority of produced responses began with a definite determiner (‘the’ - 4a/). Responses that included
other determiners (e.g. ko/ ha-kelim— ‘all the-tools’) were coded without the determiner (such responses
were very rare).

To test the interaction between parallel predictions, we fitted a linear mixed-effects model to the
production onsets of modal responses (namely only for trials in which the most probable word was
produced). The model included the fixed factors Constraint (equal to cloze probability of the modal) and
the interaction between Competitor cloze (the cloze probability of the competitor) and Relatedness (the
average rating of relatedness between the modal and the competitor). Main effects of these factors could
not be included in the model due to their correlation with Constraint, resulting in multicollinearity (VIFs
> 10). The model included random intercepts for participants. Random effects for items were not included
since they could not be estimated independently of the fixed effects, as each item occurs at only one level
of Constraint (as was done in Staub et al., 2015). Random slopes of both factors were initially included in
the model, but had to be removed in order to achieve convergence.

2.3) Results

As expected, we found a significant effect of Constraint (Est. = -0.577, SE = 0.031, df = 3849, t = -18.47,
p < .001), such that higher constraint led to shorter production onsets. Crucially, there was also a
significant interaction between Competitor cloze and Relatedness (Est. = -0.325, SE = 0.066, df = 3849, t
= -4.95, p < .001), such that when relatedness was high, higher cloze probability of the competitor led to
shorter production onsets for the modal, but when relatedness was low, higher cloze probability of the
competitor led to longer production onsets (See Figure 1). These results indicate that alternative
predictions are activated simultaneously, interacting with each other. This is evidenced by the influence
of the relatedness between the produced modal word and its competitor, which is greater the stronger the
activation of the competitor is (i.e. the higher the competitor cloze is). Moreover, the results indicate that
the influence of relatedness is such that a highly related competitor causes facilitation, while an unrelated
competitor causes inhibition. This is in opposition to the results observed for near and distant semantic
neighbors in single-word tasks.

Mean of Relatedness -1 SD Mean of Relatedness Mean of Relatedness + 1 SD
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Figure 1. Onset times of modal responses in the data from Ness and Meltzer-Asscher (submitted), by
cloze probability of the second most probable word (‘Competitor cloze’), relatedness between the modal
and the competitor, and sentence constraint. Regression lines are plotted.

In the analysis described above, the cloze probability of the competitor was used as a measure of
competition strength. However, it is conceivable that a better measure would be the difference or the
ratio between the cloze probabilities of the modal response and the competitor. We therefore created
additional regression models, in which Competitor cloze was replaced by each of these measures.® The
performance of the three variants of the model was compared in order to test which measure best captures
the competition. The model with Competitor cloze outperformed the alternatives (Competitor cloze:
AIC =5106.5, BIC = 5137.9, Log likelihood = -2548.2; Ratio: AIC =5122.2, BIC = 5153.6, Log likelihood
= -2556.1; Difference: AIC =5123.4, BIC = 5154.8 , Log likelihood = -2556.7).

3) Replication experiment

Since the current hypotheses were developed after exploring the pre-existing data, we carried out an
additional experiment, which was a replication study pre-registered on OSF, with the hypotheses and
analysis pre-determined. The pre-registration report, as well as analysis code and data can be found at:
https: //0sf.iozab84y/1view only=cé556beeb52d455e88067bfb5c2¢c610e, (the pre-registration report can

be directly accessed at: https: /70sf.io/tzean).

3.1) Methods
3.1.1) Participants
The participants were 48 Tel-Aviv University students (16 males), all native Hebrew speakers, with an
average age of 24.29 (range: 20-32). Participants were given course credit or were paid 40 NIS (~11$) for
their participation. The experiment was approved by the Ethics Committee in Tel Aviv University.

3.1.2) Materials and procedure
The materials and procedure were identical to the previous experiment (see section 2.1 above), except
that EEG was not recorded.

3.1.3)  Audio recordings — transcription, onset measurement, and data analysis
Transcription, onset measurement, and data analysis of productions were done similarly to the previous
experiment, except for the algorithm used for the initial automatic identification of production onset.
Instead of DeepWDM, used in Ness & Meltzer-Asscher (submitted), in the current experiment we used
a PRAAT script which identifies the onset of the first voiced segment in the production. Since the
presented sentence fragments always ended with the Hebrew accusative case marker ‘et’, which only
precedes definite noun phrases, the vast majority of produced responses began with ‘ha-’ ('the’), the
definite determiner, which includes the voiced 2 vowel, enabling this script to provide an accurate onset
for a large proportion of recordings compared to the previous experiment (the onset was manually
corrected in 8.9% of the trials in the current experiment, as opposed to 17.5% in the previous experiment).

5 In order to use comparable models with the same random effect structure, all achieving convergence, the
random slopes had to be removed from these models.
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Production onsets were analyzed with linear mixed-effects models. Analyses were conducted using the
ImerTest package (Kuznetsova, Brockhoff, & Christensen, 2014) in the R software environment (R
Development Core Team, 2011). Data were winsorized by replacing data points exceeding 2.5 standard
deviations (SD) from each participant’s mean with the value of 2.5 SDs from that participant’s mean
(affecting 3.1% of the data). All models initially included the maximal random effects structure for
participants (i.e. intercept and slopes of all fixed effects and interactions). The random effects structure
was reduced when necessary in order to achieve convergence (the reduced models are specified where
relevant), by iteratively removing the random slope associated with the smallest variance (Barr et al.,
2013). Random effects for items were not included since they could not be estimated independently of
the fixed effects, as each item occurs at only one level of Constraint (as was done in Staub et al., 2015).

3.2) Results
We first carried out the analysis reported in Staub et al. (2015) to examine the effects of constraint and
cloze probability on production latencies. The results replicated Staub et al.’s (2015) findings, indicating
that words with higher cloze probabilities are produced faster and that words with similar cloze
probability are produced faster when the sentence’s constraint is higher. This analysis is reported in
Appendix A.

A relatedness rating questionnaire was conducted in order to assess the relatedness between
word pairs (i.e. modal and competitor) that were not identical to those in the previous experiment, due to
different participant completions in the two experiments. Thirty participants (different from the ones
participating in the main experiments) were asked to rate, on a 7-point scale, how related the two words
were. Ratings were normalized within participant and the average relatedness rating was calculated for
each word pair.

As in the exploratory analysis reported above, to test for competition effects we fitted a linear
mixed-effects model to the production onsets of modal responses (i.e. only for trials in which the most
probable word was produced). The model included the fixed factors Constraint (equal to cloze probability
of the modal) and the interaction between Competitor cloze and Relatedness. The random slope of
Constraint (by participants) had to be removed in order to achieve convergence.

There was a significant effect of Constraint (Est. = -0.760, SE = 0.035, df = 3796, t = -21.82,p <
.001), such that higher constraint led to shorter production onsets. Importantly, there was also a
significant interaction between Competitor cloze and Relatedness (Est. = -0.212, SE = 0.088, df = 42.93,
t =-2.42, p = .02), such that when relatedness was high, higher cloze probability of the second completion
led to shorter production onsets, but when relatedness was low, higher cloze probability of the second

completion led to longer production onsets (See Figures 2 and 3).
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Figure 2. Average onset time of modal responses in the current experiment, by cloze probability of the
second most probable word (‘Competitor cloze’), and relatedness between the modal and the competitor.
In order to divide the data into equal bins, the trials were first divided into three bins based on Relatedness
percentiles (High/Medium/Low); then, the trials in each Relatedness category were divided into three

bins based on Competitor cloze percentiles (High/Medium/Low).®
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Figure 3. Onset time of modal responses in the current experiment, by cloze probability of the second
most probable word (‘Competitor cloze’), relatedness between the modal and the competitor, and
sentence constraint. Regression lines are plotted.

6 Due to correlation between Relatedness and Competitor cloze, dividing the trials into Relatedness categories
and Competitor cloze categories independently of each other (i.e. setting fixed Second cloze boundaries across
all Relatedness categories) was not possible, since it resulted in highly unequal numbers of trials in each bin.
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We created additional regression models, in which Competitor cloze was replaced by either the
difference or the ratio between the cloze probabilities of the modal response and the competitor.” Again,
the model with Competitor cloze outperformed the alternatives (Competitor cloze: AIC = 5802.1, BIC =
5833.4 , Log likelihood = -2896.0; Ratio: AIC = 5805.8, BIC = 5837.1 , Log likelihood = -2897.9;
Difference: AIC = 5809.7, BIC = 5841.0 , Log likelihood = -2899.8), confirming that Competitor cloze
best accounts for the competition effects.

3.3) Discussion

The results of the pre-registered experiment replicate the competition effects observed in the exploratory
analysis conducted with the behavioral data from Ness & Meltzer-Asscher (submitted). The results
indicate that when the relatedness between the modal response and the second most probable response
(the competitor) is high, higher cloze probability of the competitor leads to shorter production onsets for
the modal response. However, when the relatedness between the modal response and the competitor is
low, higher cloze probability of the competitor leads to longer production onsets for the modal response,
providing evidence for competition between the (produced) modal word and the (not produced) second
most probable word. These results indicate that alternative predictions are simultaneously activated,
influencing the activations of one another.

The results also provide an additional replication of Staub and colleagues’ (2015) findings
regarding the influences of cloze probability and sentence constraint on production onset of cloze
responses, showing that both high cloze probability and high constraint contribute independently to
shorter production onsets.

4) Accounting for cloze response generation within the IAC framework

In two experiments, we found that activation of a closely related competitor facilitates retrieval of the
modal response, while activation of an unrelated competitor inhibits retrieval of the modal response.
These findings are in the opposite direction to the effects observed for near and distant semantic
neighbors in single-word tasks. Namely, the activation of a closely related alternative prediction is
facilitative, while the activation of a near neighbor is inhibitory. In this section we show that the current
findings can be predicted by the same computational model that accounts for the effects of semantic
neighbors, when the mechanisms underlying the different tasks are taken into consideration.

As discussed in the Introduction, accumulating evidence indicates an intriguing pattern of
conflicting neighborhood effects under different circumstances, e.g. letter substitution neighbors cause
facilitation (Andrews, 1989, 1992; Forster & Shen, 1996; Johnson & Pugh, 1994; Sears, Hino, & Lupker,
1995), while transposed letter neighbors cause inhibition (Acha & Perea, 2008; Andrews, 1996; Johnson,
2009); distant semantic neighbors cause facilitation (Mirman, 2011; Mirman & Magnuson, 2008), while
distant semantic neighbors cause inhibition (Fieder, Wartenburger, & Rahman, 2019; Mirman, 2011;
Mirman & Magnuson, 2008). To account for these contrasts, several models where put forward,
describing the underlying interactions that lead to the observed variation in the effects. Most of these
models are specifically designed to account for the results obtained in a certain domain, i.e. a specific
task or modality (e.g. models accounting specifically for reading aloud include the Dual Route Cascaded

7 In order to use comparable models with the same random effect structure, all achieving convergence, the
random slopes had to be removed from these models.
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Model, Coltheart, Davelaar, Jonasson, & Besner, 2001; the Connectionist Dual Process Model: Perry,
Ziegler, & Zorzi, 2007; and the Self-Organizing Lexical Acquisition and Recognition Model: Davis,
2010). However, Chen and Mirman (2012) have constructed a general model, within the IAC framework
(e.g., McClelland & Rumelhart, 1981), which is applicable in principle to any task or modality. Here, we
adapt this model to account for the generation of predictions and cloze responses.

Chen and Mirman’s (2012) model consists of three layers of processing units: a meaning layer in
which each unit represents a semantic feature, a lexical layer in which each unit represents a word, and
a word form layer in which each unit represents a phoneme or a letter. Each unit in the lexical layer is
bidirectionally connected via facilitatory connections to the meaning units which represent its semantic
features, as well as to the word form units which represent its constituent letters/phonemes. Additionally,
each unit in the lexical layer (i.e. word) is connected to all other word units by bidirectional inhibitory
connections. This lateral inhibition implements competition during lexical selection. Lateral connections
within the meaning layer are either facilitatory or inhibitory, depending on the co-occurrence of the
features, i.e. features that very often appear together exert facilitation on one another, while features that
appear together rarely or not at all exert inhibition on one another. For simplicity, the model assumes
that all words are connected to ten semantic features. Additionally, for simulations related to semantic
neighborhood, the word form layer (phonemes or letters) was removed since it would not have any
influence on the relevant effects. This layer would likewise not be relevant in the current simulations,
and was removed from them.

Input activations enter the model either from the meaning layer or from the word form layer,
depending on the simulated task. For example, in an auditory lexical decision task, the input activates
the phonemes that the word consists of (which in turn activate units in the lexical layer). In a picture
naming task, on the other hand, the input activates semantic features of the word (which in turn activate
units in the lexical layer). In each iteration during the simulation, the amount of facilitation and inhibition
that each unit receives from its connections is calculated, and activation levels are updated accordingly.
Reaction times are defined as the number of iterations it took for a word unit to reach a pre-determined
activation threshold, i.e. lexical selection is completed once a word reaches retrieval threshold.®
While the amount of facilitation exerted in the facilitatory connections between layers is linearly
dependent on unit activation, the strength of inhibition exerted in the inhibitory connections within the
lexical layer is a non-linear function of unit activation (namely, a sigmoid function), such that weakly
activated word units exert very little inhibition, and strongly activated words exert very strong inhibition.
Ultimately, whether a certain manipulation is predicted by the model to cause inhibition of facilitation
depends on what is more significantly increased by the manipulation: the activation added to the target
word via between-layers facilitatory connections, or the inhibition incurred to the target word via within-
layer inhibitory connections.

The simulations conducted by Chen and Mirman (2012) have shown that the model correctly
predicts the direction of neighborhood effects observed in a variety of tasks and modalities. Most
relevantly, the model correctly predicts that in single-word tasks (e.g. word recognition and picture

8 Here we only provide a description of aspects of the model that are relevant for our current simulations. For a

full description of the model and previous simulations see Chen and Mirman (2012).
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naming) many near semantic neighbors (relative to few) cause inhibition, while many distant neighbors
(relative to few) cause facilitation. Near semantic neighbors are modeled as words that have high overlap
in semantic features with the target word, i.e. connected to 8 (out of 10) of the target word’s semantic
features. In this case, the neighbor will be almost as strongly activated by the target’s semantic features
as the target itself. Thus, the activation of the neighbor at the lexical level would be strong and the
inhibition it would exert on the target word would outweigh the additional facilitation that the target
word would get from the shared features (due to their facilitatory connections with the neighbor being
bidirectional). This would be the result mainly since, as mentioned above, the inhibition is non-linearly
dependent on unit activation (while the facilitation is linearly dependent on unit activation) and would
thus be greater than the facilitation when the neighbor’s word unit activation is high. On the other hand,
distant semantic neighbors, which are modeled as words that are connected to 4 (out of 10) of the target
word’s semantic features, are weakly activated by the target’s semantic features. Therefore, the
activation of the neighbor at the lexical level would be weak, exerting very little inhibition on the target
word, which would be outweighed by the additional facilitation that the target word would get from the
shared features (due to their bidirectional facilitatory connections with the neighbor).

4.1.1) Relatedness and competitor cloze
Crucially, in Chen and Mirman’s (2012) simulations, the input is assumed to only activate the features of
the target word, and other words are activated due to their connections with shared features. This
assumption is appropriate for e.g. word recognition and picture naming, for which the input is the word
itself, or a picture of it. However, this is not the case when considering cloze responses, for which the
input is a sentence context. A given context can generate several alternative predictions, activating the
features of various words to different degrees based on their probabilities. This means that words other
than the produced cloze response (which we will refer to as the target word henceforth) receive activation
directly from the input, and not only by association to the target word.

As mentioned in the Introduction, sentences differ in the degree to which alternative completions
share semantic features with each other. Returning to the example discussed in the introduction, the most
probable completions for sentence (1) are “popcorn’ and ‘candy’, which share many semantic features,
while the most probable completions for sentence (2) are ‘wheel’ and ‘mattress’, which barely share any
semantic features. Therefore, we assume that in sentence (2), the activation of the features of the target
word ‘wheel’ is proportional to the probability of this word only. In sentence (1), the activation of the
features which are unique to the target word ‘popcorn’ is also in proportion to this word’s cloze
probability; however, we assume that the features shared by ‘popcorn’ and ‘candy’ are activated in
proportion to the sum of the cloze probabilities of these two words. The input activations of the target
word are thus not based only on the target word’s cloze probability, but also on the cloze probability of
alternative predictions with shared semantic features. In other words, the target word can benefit from
input activation of the competitor if it is semantically related.

Indeed, with the additional assumption that in the cloze task the input activation of each feature
is proportional to the sum of the cloze probabilities of the cloze responses that share it, the model predicts
the results observed in the current study®. In the first simulation we modeled a sentence in which the

° The code for our simulations can be found at:
https://osf.io/ab84y/?view only=c6556beeb52d455e88067bfb5c2c610e
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constraint (i.e. the cloze probability of the modal/target word) is 0.6, and the competitor’s cloze is 0.4,
namely, a strong competitor. We manipulated the relatedness between the target and the competitor such
that a related word shared 8 (out of 10) semantic features with the target word, and an unrelated word
shared only one feature.*® The results of the simulation are shown in Figure 4A. These results show faster
activation and decreased reaction time for the target when the competitor is related to the target word,
relative to when it is unrelated, in line with the results observed in the current study.

In an additional simulation, we explored the influence of the competitor’s cloze on the relatedness effect.
This simulation was identical to the first one, except that the competitor’s cloze was 0.2 (instead of 0.4 in
the first simulation). The results of the simulation are shown in Figure 4B. These results show a smaller
facilitation effect by a related competitor, and a smaller inhibition effect by an unrelated competitor,
relative to the first simulation.

The two simulations together thus show an interaction between competitor cloze and
relatedness, as observed in the current study. For a closely related competitor, the higher its cloze
probability, the more it causes facilitation, and for an unrelated competitor, the higher its cloze
probability, the more it causes inhibition. Thus, although the current results contrast with the results
observed for semantic neighborhood effects, the opposite direction of the effects stems from the

characteristics of the input activations, and can be predicted within the same computational model.

Constraint = 0.6, Competitor cloze = 0.4 Constraint = 0.6, Competitor cloze = 0.2
0.9 091

——=— Target-Rel
Competitor-Rel
—4— Target-Unrel
- Competitor-Unrel

—=e— Target-Rel

. Competitor-Rel
——4— Target-Unrel

+ Competitor-Unrel

0.8

Activation
Activation

Rel  Unrel Rel Unrel

0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80
(A) Time ( B ) Time

Figure 4. Simulation results: activation levels over time for the target word (i.e. the produced modal
response) and the competitor, when the target and the competitor are related (Rel) or unrelated (Unrel).
The competitor’s cloze probability is 0.4 in panel (A) and 0.2 in panel (B). The bar plots show reaction
times (RT) predicted by the model, i.e. the number of iterations until the target word reached the retrieval
threshold of 0.7.

4.1.2) The influence of constraint on the production of low cloze responses
As discussed in the Introduction, Staub and colleagues (2015) have shown that words with higher cloze
probability are produced faster in the speeded cloze task, and that words with similar (low) cloze

10 We note that modeling the unrelated word as not sharing any features with the target word, rather than
sharing one feature, did not significantly alter the results, and the direction of effects predicted by the model
remained the same. We chose to model the ‘unrelated’ word as sharing a (single) feature with the target word
in order to acknowledge that words that are activated by the same sentence context cannot truly be
completely unrelated (otherwise there would not be a context that could be completed by both).
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probabilities are produced faster in high constraint (relative to low constraint) sentences. These results
were replicated in Ness & Meltzer-Asscher (submitted) as well as in the current experiment. In their
paper, Staub and colleagues (2015) suggested a computational model to account for these results.
However, in that model each potential response independently accumulates activation, and the activation
of one response cannot influence the activation of another. Thus, while the model accounts for the
influences of cloze probability and constraint, it cannot (in its current form) account for any influence of
relatedness between alternative responses.

We therefore sought to adapt Chan and Mirman’s (2012) IAC model to fully capture the
generation of cloze responses, including the influences of cloze probability and sentence constraint. We
did this by the addition of random noise. In the current model, without noise, the modal response will
always be the first to reach the threshold. However, participants do not uniformly produce the most
probable word in the cloze task, which indicates that the race towards the retrieval threshold is noisy,
allowing for a less probable word to occasionally win over a more probable one. The addition of noise
to the model was implemented by adding a random number, drawn from a normal distribution with a
mean of zero, to the activation level of each unit in each iteration. The random noise could therefore
either increase or decrease the activation level.

We then conducted two additional simulations, in order to test the influences of cloze probability
and sentence constraint. In the first simulation we modeled a sentence for which the possible cloze
responses have cloze probabilities of 0.6 and 0.4 (i.e. the sentence constraint is 0.6). In the second
simulation we modeled a sentence for which the possible cloze responses are 0.4, 0.2, 0.2, 0.2 (i.e. the
sentence constraint is 0.4). For simplicity, none of the cloze responses in these simulations were related
(i.e. each word was connected to 10 different semantic features). Each simulation was run 10000 times.
The results are plotted in figure 5. First, higher cloze probability led to reduced reaction times (see figure
5A), since the higher the cloze probability of a word is, the higher the input activation it receives.
Additionally, looking at reaction times for the words with 0.4 cloze probability in both simulations
(namely when sentence constraint is 0.6 vs. when it is 0.4), reaction times were lower in the high constraint
sentence then in the low constraint sentence (see figures 5B and 5C). This is in line with the explanation
discussed in the introduction (proposed by Staub et al., 2015), that reaction times for low cloze responses
in high constraint sentences are decreased simply since the high cloze alternative obscures the
measurement of potentially longer retrieval times. Namely, if the low cloze word had not been retrieved
fast enough to win over the high cloze alternative, it would not have been produced, since the high cloze
alternative would be produced. The results of the simulations therefore capture the behavioral findings

regarding the influences of cloze probability and sentence constraint on production onsets.
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Figure 5. Simulation results: average reaction time by cloze probability (A). Reaction times for the 0.4
cloze probability response in high (A) and low (B) constraint.

5) General discussion

The current study employed a speeded cloze task in order to examine the interaction between parallel
predictions. We assessed whether, and how, production onsets of the modal response are influenced by
the strength and relatedness of its strongest competitor, the second most probable completion. In an
exploratory analysis using previous data, as well as in a pre-registered replication, we found that when
the modal response and the competitor were related to each other, higher cloze probability of the
competitor led to shorter production onsets of the modal response. This means that activation of the
related competitor facilitated the retrieval of the modal response. However, when the competitor was
unrelated to the modal response, higher cloze probability of the competitor led to longer production
onsets of the modal response. This means that activation of the unrelated competitor inhibited the
retrieval of the modal response. These results provide direct evidence for the prevalent assumption that
multiple predictions are activated simultaneously. More specifically, the results demonstrate interaction
between parallel predictions, showing for the first time that parallel predictions do not accumulate
activations independently, but that instead, the activation levels of different predictions directly
influence one another.

Additionally, the results show that the influence of relatedness between parallel predictions
during sentence processing is in the opposite direction than the effects observed for near and far semantic
neighbors in single-word tasks. Namely, the activation of a closely related alternative prediction in the
current study is facilitative, while the activation of a closely related neighbor was found in previous
studies to be inhibitory. We show that although these effects of semantic relatedness manifest in different
directions, they both stem from dynamic interactions between and within levels of representation. The
current results can thus be explained by taking into consideration the different inputs to lexical selection
in prediction during sentence processing and cloze response generation, as compared to single-word
tasks such as word recognition or picture naming. Specifically, since in single-word tasks the input is the
word itself (or a picture of it), this input can be assumed to only activate the features of the target word,
and other words are activated only due to their connections with shared features. With a sentence context,
on the other hand, a given context generates several alternative predictions, directly activating the
features of various words to different degrees based on their probabilities. This means that words other
than the target word receive activation directly from the input, and thus, the target word can benefit from
input activation of the competitor if it is semantically related.

The fact that the same model accounts for behavior in both word recognition and cloze response
generation despite the different manifestation of relatedness effects indicates that the generation of
predictions occurs under the same principles that operate during the retrieval of a word when it is
presented in the input. The results and simulations thus hint that the underlying architecture that supports
prediction is the same as that underlying word processing in general.

Previous results and model simulations have led Chen and Mirman (2012, 2015) to suggest that,
in general, simultaneously activated words will exert net inhibitory effects if they are strongly activated,
and net facilitative effects if they are weakly activated. This was most directly demonstrated by showing
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that the same phonological neighbors exert inhibition when they are strongly activated, and facilitation
when their activation is reduced (due to inhibition from activated semantic competitors; Chen & Mirman,
2015). Notably, the current study indicates that this generalization does not hold in all instances. Our
results show that stronger absolute activation of a competitor can be facilitatory if this activation adds to
the target word’s activation as well (i.e. a related alternative prediction). As the target word has higher
activation levels relative to the competitor, the addition of activation to shared features contributes more
to the target word then to the competitor due to the non-linear inhibition at the lexical level, which means
that the stronger the related competitor is, the more it would facilitate the retrieval of the target word.
As explained above, our account for the results emerges from Chen and Mirman’s (2012) model, and we
attribute the observed effects to the balance between activations from semantic features and inhibition
at the lexical level. While this model provides a plausible mechanism that captures our results (as well
as previous results), we would like to acknowledge that there could be alternative architectures that can
potentially account for the same pattern. For example, to capture the current data we can consider an
architecture that contains a level of event representations, or situation models.!! A sentence fragment for
which the two most probable completions are highly related likely represents a less ambiguous situation
than a sentence fragment for which the two most probable completions are unrelated. For example,
looking again at the sentences in (1)-(2) discussed above, a sentence such as ‘Before the movie even
started, the kids started to eat the __’ represents very similar scenarios whether it is completed by
‘popcorn’ or by ‘candy’. In this case, a strong competitor that is highly related to the modal response
indicates that there is little ambiguity in the situation model that the sentence fragment evokes, and
therefore responses are fast. On the other hand, a sentence such as ‘Before the trip, Yoel looked for the
pump in order to inflate the __’ can represent somewhat different scenarios when it is completed by
‘wheel” and when it is completed by ‘mattress’ (e.g. a planned bike ride versus a planned camping trip).
In this case, a strong competitor that is not highly related to the modal response indicates that there is
substantial ambiguity in the situation model that the sentence fragment evokes, which may delay
responses. Thus, the current results may also be explained as competition and facilitation at the level of
event representation. The current study cannot decide between the two accounts, although we do note
that the account based on Chen and Mirman’s (2012) model has the advantage of adding very minimal
assumptions to a model that already accounts for a wide range of phenomena. Further research is needed
in order to tease apart representations at the lexical level from those at the situation level.

The study reported here can form a basis for several future directions. First, one limitation of the
current study is that in investigating the interaction between parallel predictions, we specifically tested
the influence of the strongest competitor, namely the second most probable word, on production of the
modal word. However, it is likely that the entire distribution of possible responses influences the
production of any possible response. Looking at these complex effects posits some interesting
methodological and theoretical considerations, such as how to create measures that weigh the influences
of multiple words, taking into account not only the probability of each response but also the degree to
which each word is related to the produced word, and to the other alternatives.

Additionally, the current study focused on the effect of semantic relatedness between predictions.
However, neighborhood effects show that orthographic and phonological similarity between

simultaneously activated words can also influence lexical selection. Further research is needed in order

11 We thank Adrian Staub for proposing this alternative account.
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to test whether orthographic and phonological similarity between parallel predictions has an effect on
cloze response generation, and in what direction.

Lastly, the influence of parallel predictions on one another can potentially take place at different
stages — during activation, selection/retrieval, maintenance in working memory, production planning
and so on. We have shown that competitor cloze, rather than the difference or ratio between cloze
probabilities of the modal response and the competitor, best accounted for the interaction we observed.
This finding suggests that the interaction found here likely stems from competition at the activation
stage, rather than difficulty in selection mechanisms and/or retrieval, since difficulty stemming from
competition in these latter stages is likely to depend on the modal response’s strength over the alternative
rather than directly on how strong the alternative is in absolute terms. Moreover, the model used here
(Chen & Mirman, 2012), which assumes interaction during the activation of words (prior to retrieval), was
able to capture the behavioral results. However, the interaction between parallel predictions may not be
limited to this stage only. Further research can pinpoint the specific stage, or stages, that are relevant for
these interactions, in order to better understand the interplay between simultaneously activated words.
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7) Appendix A —replication of Staub et al. (2015)’s analysis with the current data

We followed the analysis reported by Staub et al. (2015). Model 1 included cloze probability as the only
fixed effect. In order to achieve convergence, the random slopes had to be removed in this model. Higher
cloze probability led to shortened production onset (Est. = -0.279, SE = 0.007, t = -39.35, p < .001). Model
2 included constraint as a fixed factor, as well as a factor indicating whether or not the modal response
was produced. In order to achieve convergence, the random slopes of Constraint and the interaction
between Constraint and Modal had to be removed in this model. A significant effect of Constraint was
found (Est. = -0.192, SE = 0.008, t = -22.37, p < .001), such that higher constraint led to shortened
production onset. Additionally, modal responses were produced significantly faster than non-modal
responses (Est. = -0.247, SE = 0.030, t = -8.20, p < .001), indicating that the effect of cloze probability in
Model 1 cannot be solely driven by constraint (See Figure 6A). Model 3 included cloze probability and
constraint as fixed factors, and only included responses with cloze probability <.4, allowing to separate
constraint and cloze probability. In order to achieve convergence, all random slopes had to be removed
in this model. Significant effects of both cloze probability and constraint were found (cloze probability:
Est. = -0.167, SE = 0.011, t = -15.20, p < .001; constraint: Est. = -0.135, SE = 0.012, t = -10.97, p < .001),
confirming that the production of low cloze completions is indeed influenced by sentence constraint (See
Figure 6B). The results of the current experiment therefore provide an additional replication of the
findings of Staub and colleagues (2015). The full results of the three models are reported in Table 2.
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Figure 6. (A) Mean onset time for modal and non-modal responses, in sentences with high (>0.5) and low
(<=0.5) constraint. (B) Mean onset time by cloze probability, in sentences with high (>0.5) and low (<=0.5)

constraint. Error bars represent standard error of the mean.
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Table 2: Mixed-effects regression model coefficients

Estimate SE df t value p value

Model 1

Cloze probability 0.279 0.007 7316 -39.35 <.001
Model 2

Constraint 0.192 0.008 7302 -22.37 <.001
Modal -0.247 0.030 58.76 -8.20 <.001
Constraint : Modal -0.020 0.017 7295 -1.18 0.240
Model 3

Cloze probability -0.167 0.011 3910 -15.20 <.001
Constraint -0.135 0.012 3907 -10.97 <.001
Cloze probability : Constraint -0.025 0.016 3907 -1.56 0.118
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2.3 From pre-activation to pre-updating: A threshold mechanism for commitment to strong

predictions

Tal Ness and Aya Meltzer-Asscher (2021b)
Psychophysiology, 58(5), e13797

Abstract

Ample evidence suggests that during sentence processing comprehenders can “pre-
activate” lexical/semantic knowledge stored in long-term memory. A relatively recent
development suggests that in some cases a stronger form of prediction is employed,
involving “pre-updating” the predicted content into the sentence’s representation being
built in working memory. The current study argues for an activation threshold
mechanism by which pre-updating is initiated, within the routine processing stages of a
word in a context. By combining a speeded cloze task with event-related potentials, we
were able to analyze electrophysiological data measured prior to when participants were
prompted to produce a completion, based on the participant’s cloze response, reflecting
their strongest prediction at that specific moment in time. A P600 effect reflecting pre-
updating was observed in high (relative to low) constraint sentences, even in trials where
the participant predicted a low cloze word. The results support a mechanism in which
multiple predictions accumulate activations, 'racing’ towards a retrieval threshold. Once
the activation level of a certain word passes the threshold, the word is integrated into the
sentence representation in working memory. Pre-updating occurs if a certain prediction
passes retrieval threshold prior to its realization in the input.

1) Introduction

With the accumulation of a large body of evidence indicating that prediction plays a role in sentence
processing, numerous recent studies have begun to explore the nature and dynamics of prediction, in
order to gain a fine-grained understanding of its underlying mechanisms (e.g. Brothers, Swaab, &
Traxler, 2015; DeLong, Quante, & Kutas, 2014; Ito et al., 2016; Kuperberg, Brothers, & Wlotko, 2020;
Lowder et al., 2018; Staub, 2011; Szewczyk & Wodniecka, 2020; Wlotko & Federmeier, 2015; see
Federmeier, 2007; Ferreira & Chantavarin, 2018; Kuperberg & Jaeger, 2016; Van Petten & Luka, 2012,
for relevant reviews).

Prediction in sentence processing is frequently suggested to manifest as “pre-activation” of
lexical/conceptual knowledge stored in long-term memory. The activation level of predicted content can
increase due to spreading activation from previous linguistic material, or due to more controlled
prediction processes, facilitating its retrieval when it appears in the input. Pre-activation was suggested
to underlie a wide range of findings showing reduced processing difficulty for predictable as compared
to unpredictable words, demonstrated in reduced reaction times (e.g. Ehrlich & Rayner, 1981;
Schwanenflugel & Shoben, 1985; Traxler & Foss, 2000), decreased amplitudes of the N400 event-related
potentials (ERP) component (e.g. Delong, Urbach & Kutas, 2005; Kutas & Hillyard, 1984; Wlotko &

Federmeier, 2012) and other measures.
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A more recent development suggests that in some cases, a stronger form of prediction can occur.
When a certain prediction is highly activated, it can be “pre-updated”, i.e. integrated into the sentence’s
representation being built in working memory (Kuperberg & Jaeger, 2016; Lau, Holcomb, & Kuperberg,
2013; Ness & Meltzer-Asscher, 2018a). This distinction between pre-activation and pre-updating
highlights the difference between priming of multiple entities (pre-activation) and commitment to a
specific prediction (pre-updating). By hypothesis, only the latter type of prediction would incur
additional processing costs if the prediction is disconfirmed. Since a pre-updated prediction is integrated
into the sentence representation, if it is then disconfirmed, inhibition or suppression is required in order
to “override” the integrated representation and allow integration of the actual input instead (Kuperberg,
Brothers, & Wlotko, 2020; Ness & Meltzer-Asscher, 2018b).

This pattern was indeed found in event-related potentials (ERP) studies which compared the
responses to unpredictable words in sentences with different constraint. Predictability is commonly
measured in a cloze task: participants are given truncated sentences and are asked to provide the first
completion that comes to mind for each sentence; the cloze probability of a word is defined as the
proportion of participants who provide it as a completion, and it is considered to reflect how predictable
the word is. The constraint of a sentence is defined as the cloze probability of the most probable
completion for a sentence, and it reflects the degree to which the sentence leads to a strong prediction.
Several studies found that N400 amplitudes do not differ between low-cloze words in high vs. low
constraint sentences. This finding suggests that the N400 reflects activation levels, associated with pre-
activation, rather than a penalty for disconfirmation of strong predictions. However, low-cloze words
that follow high as opposed to low constraint contexts were found to also elicit a late anterior positivity,
the ‘frontal post-N400 positivity’ (fPNP) component (e.g. Brothers, Swaab, Traxler, 2015; Federmeier,
Wiotko, De Ochoa-Dewald, & Kutas, 2007; Kuperberg, Brothers, & Wlotko, 2020; Ness & Meltzer-
Asscher, 2018b; see Van Petten & Luka, 2012 for a review). Thus, the disconfirmation of a strong
prediction incurs additional processing costs that are not observed if no strong prediction was formed in
the first place. As explained above, the pre-updating mechanism provides a plausible reason for these
additional processing costs associated with the disconfirmation of strong predictions, as pre-updating
entails integration into the sentence representation, which needs to be overridden to accommodate the
actual input.

The association between pre-updating and commitment to a certain prediction naturally stems
from the limitations of working memory (WM). Unlike long-term memory, which can simultaneously
hold a seemingly infinite number of representations, much less information can be held and processed
effectively in WM (e.g. “the magical number seven” suggested by Miller, 1956, “the magic number four”,
Cowan, 2010; Green, 2017, or even fewer items, as suggested by McElree, 2001). Therefore, it is unlikely
that many competing predictions can simultaneously be pre-updated. For this reason, only a prediction
that is highly activated would be integrated into the sentence’s representation in WM.

1.1) Pre-updating and the P600 ERP component
The P600 component, a late positive deflection in the EEG which is maximal over posterior sites, was
initially observed in response to syntactic anomalies (e.g. violation of subcategorization constraints,
Osterhout & Holcomb, 1992, or agreement errors, Hagoort, Brown & Groothusen, 1993), as well as in
“garden path” sentences, i.e. sentences in which syntactic reanalysis is needed (e.g. Hagoort, Brown &
Osterhout, 1999; Osterhout & Holcomb, 1992; Osterhout, Holcomb, & Swinney, 1994). However,
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increased P600 amplitude was later observed also in grammatical sentences that do not involve
reanalysis. For example, the component has been found in “semantic illusion” contexts, i.e. grammatical
sentences that are semantically anomalous due to thematic role reversal or thematic violations (the
nSemantic P600”, see e.g. Chow & Phillips, 2013; Hoeks, Stowe, & Doedens, 2004; Kim & Osterhout,
2005; Kuperberg et al., 2007).

Interestingly, increased P600 amplitude is also observed when a filler-gap dependency is
completed (e.g. Felser, Clahsen, & Munte, 2003; Fiebach, Schlesewsky & Friederici, 2002; Gouvea,
Phillips, Kazanina, & Poeppel, 2010; Kaan, Harris, Gibson, & Holcomb, 2000; Phillips, Kazanina, &
Abada, 2005). For example, the verb “imitated” in a sentence such as (la) elicits an increased P600
amplitude relative to the same verb in a sentence such as (1b) (Kaan et al., 2000). The difference between
these sentences is that upon encountering the verb »imitated” in (1a), the filler ("who”) is also integrated,
as the complement of that verb, receiving the thematic role of theme. In contrast, the processing of the
verb »imitated” in (1b) does not include this additional process of integrating a complement. Thus, there
are more integration demands at the verb in (1a) relative to (1b), and these are presumably reflected in the
larger P600.

(1) a. Emily wondered who the performer in the concert had imitated __ for the audience’s
amusement.
b. Emily wondered whether the performer in the concert had imitated a pop star for the

audience’s amusement.

These and other findings have led numerous researchers to argue that the P600 reflects integration
processes (Brouwer, Fitz, & Hoeks, 2012; Delogu, Brouwer, & Crocker, 2019; Kaan, Harris, Gibson, &
Holcomb, 2000; For further discussion regarding the functional nature of the P600, also see Chow &
Phillips, 2013).

A recent study used the P600 ERP component to look for electrophysiological indication for pre-
updating (Ness & Meltzer-Asscher, 2018a). In this study, participants read strongly and weakly
constraining sentences in Hebrew (e.g. 2a and 2b below, respectively) while ERPs of the predictable noun

(‘the book’), as well as its preceding verb (‘find’), were recorded.

(2) a.biglal Se-ofir lo makiret ha-sifria, ha-safranit azra lo limco et
since that-ofir not know ACC the-library, the-librarian helped him to-find ACC
ha-sefer Se-hu haia carix
the-book that-he COP needed
‘Since Ofir isn’t familiar with the library, the librarian helped him find the book he

needed.’
b. ofir xipes ~ ve-xipes bemesex Saot, avallo ecliax limco et
ofir searched and-searched for hours, but not succeeded to-find ACC

ha-sefer Se-hu haia carix
the-book that-he COP needed
‘Ofir had searched for hours, but he couldn’t find the book he needed.’
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The crucial finding of the study was that in the highly constraining sentences (e.g. 2a), relative to the
weakly constraining ones (2b), an increased P600 was observed at the verb, where the prediction was
generated. This finding indicates integration of the strongly predicted word into the sentence
representation prior to its appearance in the input, namely, pre-updating. The P600 in this case reflects
an integration process very similar to the one discussed above with regard to the completion of filler-gap
dependencies. An increased P600 is observed at the verb in (1a) relative to (1b) due to integration at this
point not only of the verb, but also its complement (i.e. integrating the filler, assigning it a thematic role
at the gap position). Similarly, an increased P600 amplitude is observed at the verb in (2a) relative to (2b)
due to the integration of not only the verb, but also its (predicted) complement. Of course, these are
different types of predictions (i.e., a grammatical prediction for a gap versus a lexical prediction for an
upcoming word), but the underlying integration processes indexed by the P600 appear to be similar (e.g.
thematic role assignment, phrase structure building, etc.). We note that the interpretation of the P600
effect observed at the verb in (2a) relative to (2b) does not hinge on a highly specific characterization of
the processes reflected by the P600; it is compatible with many of the current accounts for the P600
component. Accumulating evidence suggests that, unlike the N400 component, the P600 is unlikely to
reflect activation levels or retrieval difficulty; instead, it was argued to reflect integration processes (e.g.
Brouwer, Fitz, & Hoeks, 2012; Delogu, Brouwer, & Crocker, 2019; Kaan, Harris, Gibson, & Holcomb,
2000). Thus, although the specific functional nature of the P600 component is still under debate, if any of
the processes involved in integrating a word - syntactic structure building, dependency formation,
thematic role assignment, semantic integration, etc. - affect P600 amplitude, this is sufficient for the
conclusion that pre-updating (i.e. integrating a predicted word) is reflected in the P600 effect observed in
Ness & Meltzer-Asscher (2018a), as well as in the current study.

Interestingly, the P600 pre-updating effect observed in Ness & Meltzer-Asscher (2018a) was
greater for participants with higher WM performance, as measured by a reading span task. This finding
suggests that the tendency to engage in pre-updating depends on this individual trait, which is consistent
with the claim that pre-updating involves WM representations.

In addition, this P600 pre-updating effect on the verb was followed by greater decrease in P600
amplitude at the noun in highly constraining versus weakly constraining sentences, for participants with
higher WM performance. This finding reflects the decreased integration demands when encountering a

predicted word that had already been pre-updated.

1.2) When and how is pre-updating initiated? A threshold mechanism
The results discussed above provide support for the pre-updating mechanism; however, it is still not
clear when and how this process is initiated. Understanding what triggers pre-updating is vital in order
to establish an accurate model of how the two prediction mechanisms, namely pre-activation and pre-
updating, are incorporated within the general processing stages of a word in a sentence. The current study
is aimed to test the view presented in Ness & Meltzer-Asscher (2018a), shown in Figure 1.
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Figure 1. An outline of prediction processes within the processing stages of a word. Adapted from Ness
& Meltzer-Asscher (2018a) with permission.

At every stage during sentence processing, multiple representations in long-term memory are pre-
activated. Many different factors contribute to the activation level of a word: the context, lexical
properties of the word (e.g. frequency), idiosyncratic influences and random noise. Once the activation
level of a certain word reaches a retrieval threshold, this word is regarded as retrieved, which initiates its
integration into the sentence’s representation being built in WM.

In most cases, after processing word N in the sentence, no additional word passes the retrieval
threshold prior to the realization of the next word, N+1. Then, bottom-up activation of word N+1 from
the input will push it past the retrieval threshold, and its integration into the sentence’s representation
will occur. However, if after processing word N, the pre-activation of a certain word is strong enough, it
can pass the threshold prior to bottom-up evidence, namely prior to the realization of the next word in
the input. This is when pre-updating occurs. The strongly predicted word will be tentatively integrated
into the sentence’s representation, prior to its realization in the input. When the next word appears in the
input, the pre-updated word will be matched against it. At this point, if the input matches the pre-updated
word, integration is finalized. This stage would be less demanding than the integration of a word that had
not been pre-updated. If the input does not match the pre-updated word (which would not occur very
often, since pre-updating of a weak prediction would not have happened in the first place), then inhibition
of the falsely predicted word is needed in order to enable integration of the actual input, incurring
processing costs.

An additional aspect of the suggested mechanism is that the retrieval threshold is variable, and
may shift in order to keep the balance between the benefits of confirmed pre-updates and the costs of
disconfirmed ones. First, the threshold can differ between individuals, e.g. due to individual differences
in WM capabilities. This can account for the higher tendency to pre-update observed for participants
with higher WM performance in Ness and Meltzer-Asscher (2018a), discussed above. Secondly, the
threshold may also be adjusted by top-down control, adapting to the degree to which reliance on strong
prediction is beneficial in a given situation (e.g. due to task demands, noisy input, or predictive validity).
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Notably, based on this view, pre-updating is not a designated prediction mechanism per-se. Any
word in a sentence needs to be activated, retrieved and integrated. In order to assume that pre-updating
exists, we merely need to assume that integration can occur without the need to wait for bottom-up
activation, namely when top-down activation is strong enough to reach retrieval threshold. Therefore, a
fundamental implication of such a mechanism is that pre-updating should occur whenever a word is
activated strongly (and quickly) enough to pass the threshold prior to realization of the next word in the
input. This prediction of the model is tested in the current study, by combining ERP measurements with

a speeded cloze task.

1.3) The generation of cloze responses
The process of cloze response generation was recently addressed in a study by Staub and colleagues
(2015). In this study, the authors conducted a timed version of the cloze task, in which participants read
sentence beginnings that were presented word-by-word at a fixed rate, followed by a blank line
prompting them to complete the sentence out loud as quickly as possible. The authors tested whether
production onset is influenced by cloze probability, as well as by sentence constraint. The results showed
that production onsets were correlated with the cloze probability of the produced response, i.e. higher
cloze (more predictable) words were produced faster. More interestingly, there was also a correlation
between production onset and sentence constraint. Words with similar (low) cloze probabilities were
produced faster in sentences with high constraint, namely when the sentence had a strong, very probable,
alternative completion, than in less constraining sentences. To illustrate, consider sentences (3)-(4) (cloze
probabilities appear in parentheses)!?. Sentence (3) is a high constraint sentence, since it has a very
probable ending, "popcorn”. In contrast, sentence (4) is a low constraint sentence, since it does not
generate any highly probable completion. Staub et al. (2015) showed that a low cloze completion will be
produced faster when the sentence is more constraining, e.g. "candy” in (3) will be produced faster than

rmotebook” in (4), all else being equal.

(3) Before the movie even started, the kids started to eat the...
a. popcorn (75%)
b. candy (10%)

(4) In the classroom, Amy opened the cabinet to take out the...
a. book (25%)
b. notebook (10%)

These results can be explained if cloze probability distributions do not only reflect the behavior of a
population, but are also in some way reflected within each individual’s mind. Even those individuals
who ultimately produce a completion other than the most probable one need to have some form of latent
representation of the population cloze probability distribution, in order for constraint, namely the
strength of the most probable completion, to influence the production onset of other completions.

As argued by Staub et al. (2015), these results rule out two possible accounts for the generation
of different cloze responses to the same sentence (see also Van Petten & Luka, 2012). First, the variability

12 This example was constructed for explanatory purposes, and the presented cloze probabilities are rough
estimates.
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in cloze responses is unlikely to stem (solely) from variability in linguistic experience and real-world
knowledge across the population (i.e. different individuals, having accumulated different statistics
through their linguistic input, have different ‘most probable’ completions). Additionally, cloze responses
cannot be produced by each participant simply sampling once from the cloze probability distribution, as
suggested by Smith and Levy (2011)*2. Such accounts would not predict an influence of the response’s
probability on its production onset, let alone an influence of the probabilities of alternative responses.
Instead, Staub and colleagues (2015) demonstrate that an activation 'race’ model naturally
captures the observed results. In this model, multiple possible completions are activated and ‘race’
towards a retrieval threshold (a specific level of activation). The cloze response ultimately produced is
the one that had accumulated sufficient activation and reached this threshold first. Importantly, each
response has a mean activation rate, i.e. a stable representation of the rate at which this word is activated
in the context. This rate is presumably driven by the connection strength between the word and the
context (i.e. how strongly the context promotes the retrieval of that word). The word with the fastest mean
activation rate would most often win the race, and would thus be the word with the highest cloze
probability. Nonetheless, the activation rate of each response is somewhat variable, due to random noise
and idiosyncratic influences. Due to this probabilistic nature of activations, for a given participant in a
given trial, a response with slower mean activation rate (i.e. a word that is less strongly connected to the
context) can reach retrieval faster than the response with fastest mean activation rate. However, for this
to happen in a constraining sentence, when one completion has a very fast mean activation rate (i.e. it is
a highly probable word, which is strongly connected to the context), the less probable word (with slower
mean activation rate) must be activated fast enough, in that trial, in order to pass the retrieval threshold
prior to the more probable word. The model can thus explain why the production onsets observed for
cloze responses with similar cloze probabilities are shorter in high constraint contexts than in low
constraint ones. Importantly, this implies that an individual who, in a given trial, produces a low cloze
response to a high constraint sentence, does not have an entirely different distribution of mean activation
rates for the possible responses (i.e. they do not have a different distribution of connection strengths),
compared to individuals who produce the high cloze response. Instead, the production of the low cloze
response is caused by moment-to-moment variation (i.e. noise) which occasionally lead to exceptionally
fast activation rate for that low cloze response, allowing it to win the race over the more probable word.
We note here that we assume that the mean activation rate of a word is driven by the connection strength
between that word and the context, an assumption not explicitly articulated in Staub et al. (2015).
Admittedly, connection strengths may not be the only neurally plausible representation for the mean
activation rates of different words by a given context. However, for clarity of presentation, we use here
‘connection strengths’ to refer to the stable representation of mean activation rates (which drive cloze

probability distributions).

1.4) The current study
The current study is aimed to test the hypothesis that pre-updating is initiated by a noisy activation race
towards a threshold (see section 1.2), similar to the generation of cloze responses. On this view, pre-
updating should occur whenever a predicted word passes retrieval threshold prior to realization in the

13 This suggestion may not be intended as a description of the actual process taking place in the brain, but
rather as a computational description of the task (as also noted by Staub et al., 2015).
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input. As discussed above, the results of Staub and colleagues (2015), indicate that when a speaker
produces a low cloze word as the first completion that comes to mind for a high constraint sentence, this
word has to have been activated fast despite its low cloze probability. Therefore, if pre-updating is indeed
initiated by an activation threshold, then when a participant produces a low cloze word as a cloze
response to a high constraint sentence, this word should have also been pre-updated, due to its strong
activation at that moment and despite its low cloze probability.

Crucially, the results of Staub et al. (2015) also indicate that the distributions of connection
strengths (i.e. mean activation rates for the possible completions for a sentence), which underlie cloze
probability distributions, are in some way represented within each individual’s mind (otherwise the cloze
probability of an unproduced response cannot influence the production onset of another response).
Despite this, a low cloze word is sometimes produced for a high constraint sentence, showing that
activations sometimes diverge from these connection strengths. Thus, activations at a given moment
provide a less reliable measure of the actual likelihood of a word to be the continuation of a sentence,
compared to connection strengths. Notably, in the speeded cloze task, the participant’s goal is to produce
a completion as quickly as possible, and there is no ‘correct’ response. In such a task it is therefore
reasonable that (possibly noisy) activations should be “good enough” to rely on, and a low cloze word
will be produced as a cloze response to a high constraint sentence if it is more activated at that moment,
making it easier to retrieve. This raises the question of whether the underlying information regarding the
actual likelihood of a word to appear given a context (represented in connection strength) can be accessed
in other tasks and by other processes, and whether this information (rather than noisy activations) is relied
on in processes for which an accurate estimation of a word’s likelihood to appear is more crucial.

As detailed above, pre-updating is a strong form of prediction, hypothesized to incur processing
costs if disconfirmed. Therefore, the pre-updating mechanism should be triggered only by a prediction
that has a high likelihood of success. The decision of whether to pre-update is thus fundamentally
different from the decision of which word to produce in the cloze task: while there is no penalty for
producing a low cloze completion in the cloze task, pre-updating an improbable word would often result
in processing costs, since this prediction is highly likely to be disconfirmed. Since connection strength
is a reliable measure of the likelihood of the prediction to be correct, rationally, pre-updating could be
triggered based directly on the connection strength between the predicted word and the context, if this
information is accessible, rather than based on noisy activations (even if cloze response generation is
based on the latter). If this was the case, then when the activation of a low cloze word is stronger than the
activation of a high cloze alternative, the low cloze word would be produced as a cloze response, without
having been pre-updated prior to production. This is so since the participant’s strongest prediction at that
moment in time (the most activated word) was an improbable word (with relatively weak connection
strength to the context) and it therefore did not trigger pre-updating. On this view, then, cloze response
generation and pre-updating are based on different information types, due to their different nature. Our
hypothesis, namely that pre-updating, like cloze response generation, is initiated by a race towards an
activation threshold, states that this is not the case. Namely, it suggests that although our brain does have,
in some form, a representation of the distribution of connection strengths (which is a more reliable
measure of a word’s likelihood to appear), this information cannot be (or is not) accessed directly, without
the mitigation of noisy activations, even in a decision that might incur failure costs, i.e. pre-updating.

The current experiment was therefore designed to examine the prediction processes that take
place prior to when a participant provides a low cloze word (e.g. ‘candy’) as a continuation for a high

66



constraint sentence (e.g. 'Before the movie even started, the kids started to eat the...”). Specifically, we
hypothesized that the P600 pre-updating effect would occur in high- relative to low-constraint sentences,
not only when the participant predicts the high cloze word, but also when a low cloze word is predicted
in the high constraint context. This would indicate, as explained above, that pre-updating is initiated by
an activation race toward a threshold, similar to the generation of cloze responses.

To test this, the current experiment employed a speeded cloze task (Staub et al., 2015), but
crucially accompanied by ERP measurement enabling us to target the prediction processes that precede
production. Participants read sentence beginnings, ranging in constraint, and had to provide a completion
out loud as quickly as possible when prompted by the appearance of a blank line. ERPs were measured
on the verb where the prediction could be generated, prior to the production prompt. An additional word,
the Hebrew accusative case marker ‘et’, was presented between the verb and the production prompt, to
ensure that production does not contaminate the ERP (see Materials section). This design allowed us to
analyze the electrophysiological data based on the participant’s cloze response, reflecting their strongest
prediction at that moment in time.

If pre-updating is indeed initiated by an activation threshold, the prediction processes when a
low cloze word is produced in a high constraint sentences should be on a par with those that take place
when a high cloze word is produced in these contexts, i.e. this is an instance of strong prediction, despite
the low probability of the predicted word. Therefore, pre-updating should occur, resulting in an increased
P600 where the prediction is generated, similar to that obtained for high cloze completions of high
constraint sentences.

The current design also allowed us to replicate the behavioral results observed by Staub et al.
(2015), looking at production onsets of cloze responses. We additionally administered a reading span test
to assess participants” WM performance in order to replicate the correlation between the P600 pre-
updating effect and WM performance, observed in Ness & Meltzer-Asscher (2018b).

2) Methods

2.1) Participants
Participants were 48 Tel-Aviv University students (14 males), all native Hebrew speakers, with an
average age of 24.85 (range: 18-39). Participants were given course credit or were paid 80 NIS (~22$) for

their participation. The experiment was approved by the Ethics Committee in Tel Aviv University.

2.2) Materials

The materials consisted of 156 Hebrew sentences, varying in constraint. The sentences were composed
in pairs such that each pair included a high constraint sentence and a low constraint sentence (based on a
cloze probability questionnaire, as detailed below). See Table 1 for example sentences. The critical word
for the ERP analysis was the verb (marked in bold in Table 1), which was identical for the two sentences
in each pair. The verb was always followed by the Hebrew accusative case marker (‘ ef, an orthographic
word), which was then followed by a blank line prompting participants to produce a completion. The
Hebrew accusative case marker therefore served to distance the verb from the production prompt, to
ensure that production does not contaminate the ERP. The full list of materials is provided at:
https: /70sf.io/viwds/tview only=6758eela8b3fde2b993b48a3écbbsafc.
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Table 1: Example sentences

Constraint  Sentence frame

biglal Se-ofir lo makir et ha-sifria, ha-safranit azra lo limco et
High since that-Ofir not know Acc the-library, the-librarian helped him to-find Acc __

’

‘Since Ofir isn’t familiar with the library, the librarian helped him find __

ofir xipes ve-xipes bemesex Saot, avallo ecliax limco et
Low ofir searched and-searched for hours, but not succeeded to-find Acc

‘Ofir had searched for hours, but he couldn’t find __’

In order to prevent participants from anticipating when they will be prompted to produce a cloze
response, the sentence fragments varied substantially in length, with the number of words prior to the
critical verb ranging from two to fifteen. In addition, some of the sentences included additional verbs
and accusative case markers after which the sentence continued, and the production prompt was not yet
presented. The number of words prior to the verb did not differ between the high and low constraint
sentences (High: M =7.2, SD = 2.4; Low: M = 7.2, SD = 2.5; p = .794), nor did the length or frequency
of the word prior to the verb (length — High: M = 4.3, SD = 1.9; Low: M =4.4., SD = 1.4; p = .874;
frequency — High: M = 1027.5, SD = 2565.6; Low: M =1277.3, SD = 3500.8; p = .612). Presentation order
was randomized for each participant. Sentences from the same pair (which contained the same verb) were
separated by at least 50 trials, with the order of presentation counterbalanced between conditions.

Cloze probability questionnaires: cloze probability questionnaires were conducted on two versions of

each sentence — truncated prior to the verb, and truncated following the verb. This was done to assess the
cloze probability of the verb, which is the critical word for the ERP analysis, and to assess the constraint
of each sentence (after the verb). Each sentence fragment was presented to at least 30 participants
(different from those participating in the ERP experiment). Participants were instructed to complete each
sentence with the first completion that comes to mind. Several questionnaires were conducted, but no
two versions of the same sentence nor two sentences from the same pair were presented to the same
participant. The order of the sentences was randomized for each participant.

Based on the results of these questionnaires, the experimental materials were constructed such that
the cloze probability of the critical verb was very low in both high and low constraint sentences, and did
not differ significantly between the conditions (High: M = 5.8%, SD = 15.7; Low: M = 3.2%, SD = 8.7;
p = .093). The average constraint following the verb (i.e. the constraint calculated based on cloze
responses generated when the presented sentence fragment included the verb) was 78.9% in the high
constraint sentences (range: 50%-100%), and 26.7% in the low constraint sentences (range: 0-50%).

2.3) Procedure
Stimuli were presented using the E-prime 2.0 software (Psychology Software Tools, Pittsburgh, PA).
Each trial was preceded by a 1000ms fixation cross. Sentences were presented word-by-word in the
middle of the screen for 250ms, with a 350ms ISI. Following the sentence fragment, a blank line prompted
participants to produce a completion. Participants were instructed to produce a completion out loud as
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quickly as possible once the blank line appears. The blank line was presented until the participant
finished producing a completion and pressed a button to continue, or for up to 5 seconds (i.e. if the
participant did not produce a completion within 5 seconds, the trial was terminated). After each trial, a
string of number signs (####) appeared on the screen and the participant pressed a button when they were
ready to start the next trial. Participants were encouraged to take as many breaks as needed. Prior to the
experiment, participants completed a practice block of five trials. The experimental session (including
EEG set-up) took 60-90 minutes.

Reading span test: To assess WM performance, each participant completed a reading span test. The test

was performed after the main experiment. The test’s procedure was based on Daneman and Carpenter
(1980), with minor differences. Participants read aloud series of Hebrew sentences, after which they had
to recall the last word of each sentence. The number of sentences in the series increased from two to six.
Participants had three series in each level, and the last level at which a participant correctly recalled all
words in at least two series was defined as this participant’s reading span (i.e., when the participant failed
to recall a word in two series of the same level, the test was terminated and the participant’s reading span
was set at the preceding level). Two practice series (at the two-sentence level) were performed prior to
the test, in which participants could make mistakes and ask questions.

2.4) EEG recording and pre-processing
The electroencephalogram (EEG) data were recorded using a BrainVision actiCap system with 32
AgsAgCl scalp electrodes attached according to the 10-20 system. Two electrodes were used to monitor
EOQG, located at the infraorbital ridge and the outer canthus of the right and left eyes respectively.
Electrode impedances were kept below 5 kQ for all scalp electrodes and below 15Q for the EOG
electrodes. During recording, the EEG was referenced to Fp2. The EEG was then re-referenced offline
to the average of the left and right mastoid electrodes. Data were collected at a 250 Hz sampling rate and
low-pass filtered at 70 Hz. Data were then bandpass-filtered between 0.1 and 30 Hz, and segmented into
1200 ms epochs, including -200 to 1000 ms relative to the onset of the critical word. The 200 ms prior to
the onset of the critical word were used for baseline correction. Trials contaminated by blinks, eye
movements, excessive muscle activity or amplifier blocking were rejected off-line before averaging and
excluded from further analysis (this affected 4.78% of the trials).
2.5) EEG data analysis

Based on the typical time-window of the P600 component, mean amplitudes over the 500-800ms time-
window were analyzed. Electrodes were grouped based on their anteriority and laterality (Anterior - Left:
F7, F3, Fp1, FCs5, FC7, T1, C3; Middle: Fz, Cz; Right: F8, F4, Fp2, FC2, FCé, T7, C4; Posterior - Left:
P7, P3, O1, CP5, CP1; Middle: Pz, Oz; Right: P8, P4, O2, CP2, CP¢) in order to reduce the number of
comparisons and the familywise error rate (see Luck, 2014) while still allowing to assess the topography
of the effects. High constraint trials were divided based on the produced word, forming three conditions:
HH (High constraint, High cloze word produced), HL (High constraint, Low cloze word produced), L
(Low constraint). This resulted in a repeated-measures ANOVA with the factors Anteriority (Anterior,
Posterior), Laterality (Left, Middle, Right), and Condition (HH, HL,, L). The Huyhn-Feldt adjustment for
nonsphericity of variance was applied when the sphericity assumption was violated. In these cases, the
corrected p-value is reported with the original degrees of freedom.

2.6) Audio recordings — transcription, onset measurement and data analysis
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Production onset was marked using DeepWDM, a recurrent neural network for word duration
measurement (Goldrick et al., 2018). A coder then listened to each of the recordings, transcribed the
production, and corrected the marked onset when needed (17.75% of the trials). Trials with speech errors,
repairs or filled pauses were excluded (1.7% exclusion). Singular/plural and masculine/feminine forms
of the same noun were collapsed by coding each noun as its singular-masculine form (e.g. ‘shirts’ and
‘shirt” where counted as the same response). When the produced response consisted of more than one
word, only the first word was coded unless the words formed a compound. Since the presented sentence
fragments always ended with the Hebrew accusative case marker ‘et’, which only precedes definite
nouns, the vast majority of produced responses began with a definite determiner (‘the’ - 4a). Responses
that included other determiners (e.g. ko/ ha-kelim — “all the-tools’) were coded without the determiner
(such responses were very rare).

Production onsets were analyzed with linear mixed-effects models. Constraint and cloze
probability were treated as continuous variables. Analyses were conducted using the ImerTest package
(Kuznetsova, Brockhoff, & Christensen, 2014) in the R software environment (R Development Core
Team, 2011). Data were winsorized by replacing data points exceeding 2.5 standard deviations (SD) from
each participant’s mean with the value of 2.5 SDs from that participant’s mean (affecting 4.0% of the
data). All models initially included the maximal random effects structure for subjects (i.e. intercept and
slopes of all fixed effects and interactions). The random effects structure was reduced when necessary in
order to achieve convergence (the reduced models are specified in the Results section), by iteratively
removing the random slope associated with the smallest variance (Barr et al., 2013). Random effects for
items were not included since they could not be estimated independently of the fixed effects, as each
item occurred at only one level of Constraint (as was done in Staub et al., 2015).

3) Results
The data are provided at: https: /70sf.io/viwds/1view only=6758eela8b3fae2b993b48a3écbbsafc.

3.1) Behavioral results
To analyze production latencies, we followed the analysis reported in Staub et al. (2015). The full results
of the analyses are reported in Table 2. We first fitted a model that included cloze probability as the only
fixed effect. Higher cloze probabilities led to shortened production onsets (p < .001). We then fitted a
second model, which included constraint as a fixed factor, as well as a factor indicating whether or not
the produced word was the modal response, namely the most probable response for that item. A
significant effect of constraint was found (p < .001), such that higher constraint led to shortened
production onsets. Additionally, modal responses were produced significantly faster than non-modal
responses (p < .001), indicating that the effect of cloze probability in Model 1 cannot be solely driven by
constraint, as constraint was accounted for in Model 2 (see Figure 2a). We then fitted a third model, which
included cloze probability and constraint as fixed factors, and only included responses with cloze
probability <.4 (which constituted 55.9% of the data), allowing to separate constraint and cloze
probability.** In order to achieve convergence, all random slopes had to be removed from this model.

14 For responses with cloze probability of .5 or higher, cloze probability and constraint are perfectly correlated
(the constraint is always the cloze probability of the produced word in these trials). Similar to Staub et al. (2015),
we had very few responses with cloze probability between .4 and .5 that were not the modal response (when
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Significant effects of both cloze probability and constraint were found (p < .001 for both effects),
confirming that the production of low cloze completions is indeed influenced by sentence constraint in
addition to cloze (See Figure 2b).

The behavioral results thus replicated the findings of Staub and colleagues (2015), indicating that
words with higher cloze probabilities are produced faster, and that words with similar cloze probabilities
are produced faster when the sentence constraint is higher.

Table 2: Mixed-effects regression models coefficients for production onsets

Estimate SE df tvalue p value
Model 1
Cloze probability -0.236 0.016 46.86 -14.35 <.001
Model 2
Constraint -0.176 0.015 46.43 -11.89 <.001
Modal -0.201 0.021 43.52 -9.77 <.001
Constraint : Modal 0.049 0.021 48.75 2.36 .022
Model 3
Cloze probability -0.170 0.011 7332 -15.80 <.001
Constraint -0.136 0.012 7330 -11.38 <.001
Cloze probability : Constraint 0.004 0.015 7326 0.33 741
1.4 1.4 =

= 12 = 1.2
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(A) B Modal Non-modal (B) Low constraint  ® High constraint

Figure 2. (A) Mean onset time for modal and non-modal responses, in sentences with high (>0.5) and low
(<=0.5) constraint. (B) Mean onset time by cloze probability, in sentences with high (>0.5) and low (<=0.5)
constraint. Error bars represent standard error of the mean.

3.2) EEGresults

High constraint trials were divided based on the produced word, forming three conditions: HH (High
constraint, High cloze word produced; this condition included 2759 trials overall, after exclusions), HL
(High constraint, Low cloze word produced, 947 trials), L (Low constraint, 3670 trials). Mean amplitudes
over the 500-800ms time-window relative to the onset of the verb were entered into a repeated-measures
ANOVA with the factors Anteriority (Anterior, Posterior), Laterality (Left, Middle, Right), and
Condition (HH, HL, L). Grand averaged ERPs and scalp distributions of the effects are displayed in
Figure 3. The full ANOVA results are provided in Table 3.

the modal response is produced, constraint is again equal to cloze probability), and therefore decided to include
only responses with cloze probability < .4 in this model (as in Staub et al. 2015).
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500-800ms time window: The results showed a significant effect of Condition (p < .001). Additionally, a

significant interaction was found between Anteriority and Condition (p = .001), such that the effect of
Condition was greater in posterior electrodes, consistent with the common topography of the P600
component. Pairwise comparisons indicated greater positivity in the HH condition relative to the L
condition (F (1,47) = 17.331, p < .001), as well as greater positivity in the HL condition relative to L (F
(1,47) = 20.206, p < .001). The HH and HL conditions did not differ significantly (F (1,47) = 0.037, p =.848).
These results indicate a P600 effect in the two high constraint conditions — namely whether the produced

response was the high cloze response or a low cloze one — relative to the low constraint condition.
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Figure 3. Grand averaged ERPs and scalp distributions of the P600 effects (500-800ms relative to the verb
onset). HH = High constraint, High cloze word produced; HL = High constraint, Low cloze word
produced; L = Low constraint.

Table 3: ANOVA results for ERP data

df F value p value

P600
Condition 2,94 10.63 <.001
Anteriority 1,47 96.05 <.001
Laterality 2,94 22.12 <.001
Condition : Anteriority 2,94 7.52 .001
Condition : Laterality 4,188 8.19 <.001
Anteriority : Laterality 2,94 3.58 .041
Condition : Anteriority : Laterality 4,188 0.55 .661

N400
Condition 2,94 9.99 <.001
Anteriority 1,47 33.05 <.001
Laterality 2,94 9.46 <.001
Condition : Anteriority 2,94 411 .020
Condition : Laterality 4,188 3.21 .023
Anteriority : Laterality 2,94 0.33 .707
Condition : Anteriority : Laterality 4,188 0.41 .750

Additionally, a by-trial correlation was found between P600 amplitude (i.e. mean amplitude over 500-
800ms relative to verb onset) and production onset, such that faster productions occurred in trials with
larger P600 amplitudes at the preceding verb (Pearson correlation = -.048, N = 7022, p < .001. See figure
4). Finally, a by-participant correlation was found between the P600 effect (i.e. the mean difference in
amplitude between the high and low constraint sentences, 500-800ms relative to verb onset) and reading
span (Pearson correlation = 0.295, N = 48, p = .042. See Figure 5), replicating previous results (Ness &
Meltzer-Asscher, 2018b).

i
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Figure 4. By-trial correlation between P600 amplitude (i.e. mean amplitude over 500-800ms relative to
verb onset) and production onset.
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Figure 5. By-participant correlation between the P600 effect and reading span. The P600 effect was
defined as the mean difference in amplitude between high and low constraint trials in the 500-800ms time

window relative to verb onset. o — single participant, ¢ - average across reading span score.

300-500ms time window: Visual inspection of the ERPs suggested a difference between the conditions

in this time window, typical of the N400 component. We therefore chose to conduct and report this
analysis for completeness (see Discussion for interpretation of these results). The analysis showed a
significant effect of Condition (p < .001). Additionally, a significant interaction was found between
Anteriority and Condition (p = .020), such that the effect of Condition was greater in posterior electrodes,
consistent with the common topography of the N400 component. Pairwise comparisons indicated greater
negativity in the L condition relative to the HH condition (F (1,47) = 15.533, p < .001), as well as greater
negativity in the L condition relative to the HL condition (F (1,47) = 15.389, p < .001). The HH and HL
conditions did not differ significantly (F (1,47) = 0.121, p =.730). These results indicate an N400 effect in
the low constraint condition relative to the two high constraint conditions.

3.3) Reliability of cloze data
Since we had cloze responses on the same 156 sentences from two datasets — the main experiment (a
speeded cloze task) and the pre-test (an offline cloze questionnaire), we also carried out an analysis to
assess the reliability of cloze data and the influence of the procedure (i.e. speeded vs. offline) on the data.
Overall, responses were extremely similar in both datasets. The modal response to the high constraint
sentences differed between the two datasets only in one item, and in this item the constraint was relatively
close to 50% and the words that alternated were highly related near-synonyms (Aa-metupal — ‘the
patient’, and ha-xole — ‘the sick person’). The overall average constraint was also very close in the two
datasets (52.83% in the pre-test, 52.72% in the main experiment) and the by-item correlation between

sentence constraint calculated in each dataset was very high (N = 156; r = 0.90, p < .001).

4) Discussion

The current study investigated what triggers the pre-updating mechanism. We hypothesized that pre-
updating is triggered by an activation race toward a retrieval threshold. This means that similarly to the
decision which cloze completion to produce, the decision of whether to pre-update would be noisy rather
than based directly on the strength of the connection between the predicted word and the context, leading
to occasional pre-updating of improbable (low cloze probability) words, despite their high likelihood of
being contradicted by the upcoming input.
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Looking at the processes involved in the prediction of a low cloze word in a high constraint
context, we asked whether the P600 pre-updating effect would occur in high- relative to low-constraint
sentences, not only when the participant predicts the high cloze word, but also when they predict a low
cloze word. In such cases the participant’s strongest prediction, reflected in their cloze response, differs
from the population’s most predictable (most probable) word.

Participants completed sentences ranging in constraint, and ERPs were measured on the verb
where the prediction can be generated, prior to when the participants were prompted to produce a
completion. The behavioral results indicated unique contributions of both cloze probability and sentence
constraint to the production onset of cloze responses. Higher cloze probability reduced production onset
times above and beyond sentence constraint, and vice versa. These results replicate the results of Staub
and colleagues (2015) in a different language and with a different set of materials.

The ERP results showed an increased P600 amplitude at the verb in high constraint sentences
relative to low constraint ones. This effect replicates the results of Ness & Meltzer-Asscher (2018a). As
discussed in the Introduction, this effect was suggested to reflect pre-updating, indicating increased
integration costs when integration at the verb includes not only the verb itself, but also the predicted noun
(in high constraint sentences). Notably, the participants’ task in the current study was sentence
completion. However, we believe the observed ERP effects are unlikely to be related to production. First,
the P600 effect in the current study resembles in timing and topography to the P600 effect in the previous
study (Ness & Meltzer-Asscher, 2018a), which did not involve production, but merely reading for
comprehension. More importantly, the materials in the current study were constructed to ensure that
production does not contaminate the ERPs elicited by the critical verb. This was done by having the
Hebrew accusative case marker (‘et’) presented between the verb and the production prompt, distancing
the verb from production onset, as well as by varying the sentence fragments’ length (the number of
words prior to the critical verb), and including additional verbs and accusative case markers after which
the sentence continued and the production prompt was not yet presented (see Materials section), thus
preventing participants from anticipating the presentation of the production prompt. Thus, production
preparation was unlikely to have taken place at the critical verb.

The novel and crucial finding in the current study was that increased P600 amplitude at the verb
in high constraint (relative to low constraint) sentences was observed even in trials in which a low cloze
word was produced. This result provides evidence that pre-updating of a predicted word occurred in high
constraint sentences, regardless of whether the produced cloze response (i.e. the participant’s strongest
prediction at that moment in time) was a high or low cloze response.

The results also replicate the correlation between the size of the P600 pre-updating effect at the
verb and the participant’s WM performance, such that participants with higher reading span scores
showed a greater effect (Ness & Meltzer-Asscher, 2018a). This suggests that better WM capabilities allow
for a greater tendency to pre-update, supporting the involvement of WM representations in this process.
Additionally, the results showed a reduction in N400 amplitude in the high constraint sentences relative
to the low constraint sentences. Since we did not have any hypothesis regarding the N400 component,
the analysis of the N400 time window was not planned and should be regarded as exploratory. We believe
that the reduction in the N400 amplitude in the high relative to the low constraint sentences is likely due
to the difference in the verb’s cloze probability. Although we attempted to control for verb cloze
probability (see Materials section), the verb’s cloze probability in the high constraint sentences was
slightly higher than in the low constraint sentences (5.8% vs. 3.2%). The cloze probabilities of the verbs
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in all of the materials was low, which may explain why the small difference in cloze probability
manifested in the ERP results: small differences in the lower range of the cloze probability scale are
known to have relatively large effects on processing difficulty (e.g. Smith & Levy, 2013). Importantly,
however, there is no ground to assume that it is this difference in the verb’s cloze probability which
caused the P600 effect. First, countless studies manipulating cloze probability have not resulted in P600
effects attributed to cloze probability (e.g. Delong, Urbach & Kutas, 2005; Kutas & Hillyard, 1984,
Wiotko & Federmeier, 2012). Secondly, the direction of the P600 effect is such that the amplitude is higher
in the high constraint sentences (by hypothesis due to pre-updating the upcoming noun). However, the
verb’s cloze probability in these sentences was higher, not lower. If anything, we would expect the
integration of a more predictable verb to be facilitated. Assuming that the P600 reflects integration costs,
an increased P600 due to a more predictable verb is highly unlikely, pointing to the conclusion that the
P600 here indexes integration costs of the predicted, rather than the current, word. An additional
affirmation that the effect in the N400 time window and the effect in the P600 time window are not driven
by the same cause is that while the P600 effect was correlated with participants’ reading span scores, the
N400 effect was not (Pearson correlation = 0.126, N = 48, p = .392).

4.1) Pre-updating and a threshold mechanism

As explained in the Introduction, pre-updating is the integration of a predicted word into the sentence
representation being built online in WM. Since WM is limited, it is unlikely that many competing
predictions can simultaneously be pre-updated. Additionally, the disconfirmation of a pre-updated
prediction was suggested to incur additional processing costs beyond what is needed when pre-updating
did not take place, since the integrated (i.e. pre-updated) prediction has to be inhibited in order to enable
integration of the unexpected word that appeared in the actual input (Ness & Meltzer-Asscher, 2018b).
Rationally, pre-updating should therefore only be initiated when a prediction has a high probability to
be correct.

In Ness & Meltzer-Asscher (2018a), a threshold mechanism was postulated as the trigger for pre-
updating. Under this view, multiple predictions are pre-activated, but in most cases such activations are
not enough for any word to be retrieved (and integrated). Only once bottom-up activation is added (i.e.
the word appears in the input), the retrieval threshold is reached and the word can be integrated into the
sentence’s WM representation. However, if a certain word is strongly activated, for example in a highly
constraining sentence, pre-activation can be sufficient for the word to reach the retrieval threshold prior
to its realization in the input. This predicted word is then integrated into the sentence’s WM
representation, i.e. pre-updating occurs. If this is indeed the mechanism that initiates pre-updating, then
pre-updating should occur whenever a word passes retrieval threshold prior to realization in the input.
This means that whether or not an activated word is pre-updated should not directly depend on its cloze
probability, but rather on how strongly it is activated within the participant’s mind at a specific moment
in time.

The results of Staub and colleagues (2015) indicate that when a participant produces a low cloze
word as a completion for a high constraint sentence in the (speeded) cloze task, this word has to have
been highly activated despite its low cloze probability. Therefore, our hypothesis in the current study
was that if indeed an activation race towards a threshold is what triggers pre-updating, then pre-updating
should occur in high constraint sentences regardless of the cloze probability of the word predicted and
produced by the participant at that specific moment in time. Our results are in line with this prediction,
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as the P600 pre-updating effect was observed in high constraint sentences prior to both high- and low-
cloze completions.

Interestingly, this is a seemingly faulty mechanism for the initiation of pre-updating. As
discussed in the Introduction, the results of Staub et al. (2015) indicate that the distribution of connection
strengths which underlie cloze probability distributions is in some way represented within each
individual’s mind (i.e. an individual who, in a given trial, produces a low cloze response to a high
constraint sentence, does not have an entirely different distribution of connection strengths compared to
individuals who produce the modal response). Therefore, a ‘better’ mechanism would take into account
that pre-updating, unlike cloze response generation, is "’risky”, and would initiate pre-updating directly
based on the connection strength of the predicted word, which provides a more reliable measure for its
likelihood to appear in the sentence, rather than on noisy activations. Such a mechanism would entail
that when a participant produces a low cloze word as a speeded cloze response to a high constraint
sentence, i.e. when activation levels diverge from the cloze probability distribution and a low cloze word
is activated more strongly than a high cloze alternative, pre-updating would not occur. Our results show
that this is not the case, thus supporting a seemingly maladjusted mechanism for the initiation of pre-
updating by an activation race towards a threshold, rather than by direct access to the information
represented by connection strengths.

The by-trial correlation found between P600 amplitude (at the verb) and production onset of the
cloze response supports our main finding by providing additional indication that pre-updating occurs
when a predicted word passes retrieval threshold fast enough. We note, however, that although this
correlation was statistically significant, it was very small and should therefore not be taken as a strong

evidence.

4.2) The representation of cloze probably distributions
In the current study, we make the distinction between the predictability of a word given a sentence at two
levels of representation: i) the strength of connection between the word and the context, which we believe
reflects the participant’s relatively stable estimate of the likelihood of a word to appear given the context;
and ii) the strength of activation of the word at a given moment (following the context), which we believe
reflects the participant’s less accurate (but more accessible) approximation for the likelihood of a word
to appear. However, in the psycholinguistic literature, the predictability of a word given a context is most
often operationalized by the measure of cloze probability. This raises the question of the relationship
between cloze probability, connection strengths and activation levels (for a similar discussion of the
relation between cloze probability and predictability see Staub et al., 2015). In order to understand this
relationship, we need to consider how cloze probability is measured. Cloze probability data are collected
in the cloze task, by a population of participants producing cloze responses; each of these responses is
the result of an activation race within a participant’s mind, which is in turn driven by the participant’s
representation of connection strengths between the context and the potential responses (driving mean
activation rates). Thus, each response represents the most activated word for a participant at a specific
moment in time. Although activations are influenced by noise, on average (across participants) the
stronger a word’s connection to the context is, the faster its mean activation rate would be, resulting in a
higher cloze probability. This may seemingly suggest that cloze probability is equivalent to connection
strength. However, as pointed out by an anonymous reviewer, since cloze probability values are

equivalent to "win percentages” in the race toward retrieval in the cloze task, the cloze probability of a
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word is not purely a reflection of the word’s ”’strength” in the race. Instead, it is also influenced by who
the other competitors are. For example, a word with a 10% cloze probability that wins over a very strong
competitor 10% of the times in some sentence, is stronger than a 10% cloze probability word that wins
over weak competitors 10% of the times in some other sentence. Therefore, when we measure cloze
probabilities, we do not directly measure the connection strength between a word and a context (driving
the word’s mean activation rate). Rather, we measure a value that is correlated with this representation,
but is also affected by the alternative predictions for the sentence (i.e. the other words which compete in
the same race).

Importantly, this view of the mental representation of cloze probability distributions does not
alter our main conclusion, that pre-updating is initiated based on noisy activations rather than the more
stable and reliable representation of connection strengths. For example, let us consider a high (70%)
constraint trial in which a 10% cloze probability word is produced, and a low (30%) constraint trial in
which a 10% cloze probability word is produced. Admittedly, although the cloze probability of the
produced word in both trials is 10%, the connection strengths in the participants’ mind likely reflects
stronger association between the word and the preceding context for the 10% word in the high constraint
sentence relative to the 10% word in the low constraint sentence, or their win percentages would not be
the same. However, this ‘stronger’ 10% cloze probability word (in the high constraint sentence) is still
not ‘strong’, in absolute terms; it is somewhat stronger than the 10% cloze probability word in the low
constraint sentence, but it is still much weaker than its high cloze probability competitor. Additionally,
the representation of possible completions for the high constraint sentence includes the fact that there is
a much stronger alternative (the 70% cloze probability word), than the produced 10% cloze probability
word. Ifthe pre-updating mechanism were initiated based on representation of connection strengths, then
in the high constraint trial, despite the high activation level of the 10% cloze probability word, this word
would not be pre-updated since there is indication that this prediction is improbable (much less probable
than its high cloze alternative), and is unlikely to be correct. Instead, the current results indicate that when
a low cloze word is highly activated (i.e. when it wins over a high cloze alternative and is produced in

the cloze task as a completion for a high constraint context), it is pre-updated.

4.3) Is noisy better, good enough, or inevitable?

As explained above, the current results indicate that pre-updating is triggered by a noisy activation race
rather than directly by connection strength, despite the fact that connection strength would be a better
measure of the likelihood of a prediction to be correct. Pre-updating being driven by noisy activations is
what gives rise to the phenomenon observed in the current study, i.e. that an improbable word can be
pre-updated. The question then arises, why would pre-updating not be driven directly by the information
contained in connections strength, avoiding the occasional pre-updating of an improbable prediction?

We propose three possible explanations for this puzzle. First, it is possible that due to biological
properties of our brain, it may not be possible for a cognitive process to be directly informed by
connection strengths. Hence, noisy activations are used simply since they are the best approximation
available, given that the information contained in connection strengths cannot be accessed in a more
reliable way. Secondly, even if a cognitive process can in principle directly access information contained
in connection strengths, eliminating the addition of noise may require more effort (e.g. inhibiting noise
sources) or more time. This would mean that noisy activations are used because they are “good-enough”
— they may provide a sufficiently good approximation of cloze probability so that it would not be
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beneficial to exert additional efforts only to avoid the occasional cases in which a low cloze word is
inadvertently pre-updated (i.e. the effort needed to access the more accurate information may outweigh
the costs incurred by the disconfirmation of these pre-updates). A third, perhaps more interesting,
explanation may be that noise is not an architectural flaw, but an advantage. In recent years, numerous
studies have demonstrated that noise (both endogenous and exogenous) can be beneficial to neural
processing. The benefits of an adequate amount of noise were shown in experiments ranging from single
cell recordings to human behavior (for reviews see Guo, Perc, Liu, & Yao, 2018; McDonnell & Ward,
2011; Moss, Ward, & Sannita, 2004). For example, noise was shown to improve performance in
perception, learning and decision making (e.g. Gureckis & Love, 2009; Kitajo et al., 2003; van der Groen
& Wenderoth, 2016). Low endogenous neural noise was even suggested to cause the behavioral features
of autism spectrum disorder (Davis & Plaisted-Grant, 2015).

Admittedly, a certain amount of noise is likely inevitable in any cognitive process. However,
noise levels can be regulated, and can differ between systems (see Moss, Ward, & Sannita, 2004 for a
discussion of noise regulation). This means that noise levels in a given cognitive mechanism can be
optimized. Notably, in the case of the race mechanism discussed in the current study, noise levels seem
quite significant. For example, let us consider a sentence that, based on accumulated language exposure,
has a continuation with 70% probability of appearing, and alternative continuations with 20% and 10%
probabilities. In a system with no noise at all, the word that has a 70% probability would be predicted and
produced as a cloze response by any participant at any moment in time, since without noise this word
would always be the most activated and would always be retrieved. As opposed to this scenario, in the
cloze task we see that the modal response for such a sentence ‘loses the race’ 30% of the time, ergo, noise
influences the final result of the race to a non-negligible degree. This may hint that noise is not merely
inevitable in this system, but it has an objective. For example, if the confirmation and/or disconfirmation
of pre-updated predictions triggers learning, noise can enhance the precision of the learned cloze
probability distribution, strengthening the discrimination in the lower end of the distribution (i.e. the
system would be better at learning that word X has a 20% probability and word Y has a 10% probability).
The specific objectives of the noise in this system remains to be studied. One avenue to study this may
be to look at the consequences of individual differences in the noise level in this system, which may be
measured by the proportion of the trials in which a certain individual provides a low cloze response to a
high constraint sentence (i.e. more noise in this system should lead a participant to provide modal
responses less often).

4.4) Cloze probability and differential noise levels

Staub and colleagues (2015) suggested a computational implementation of the race model for generating
cloze responses. In this model, each possible cloze response accumulates activation at a certain rate, and
the finishing time for a cloze response is the time it takes for the activation of this response to reach
retrieval threshold. In each cloze trial, a finishing time for each possible response is drawn from the
finishing time distribution of that response, and the response with the shortest finishing time is produced.
This means that the cloze probability of a certain response is the proportion of trials in which it had the
shortest finishing time. The finishing time distributions of the possible responses differ in their mean. A
response with a lower mean finishing time would be more likely to ‘win the race’ and be produced,
resulting in a higher cloze probability.
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The variance of a response’s finishing time distribution represents the trial-to-trial variability in
the response’s activation rate, due to noise. In the simulations conducted by Staub et. al. (2015), a fixed
standard deviation was set for all possible responses. This means that the noise level was assumed to be
the same for all cloze responses, regardless of their mean finishing time or cloze probability. However,
recent simulations show that this may not be the case. Nakamura and Phillips (2020) have argued that
uneven noise, namely greater variability of finishing times for responses with higher mean finishing time
(lower cloze probability), better captures the empirical results. This means that the finishing time
distribution of low cloze responses is wider than that of high cloze responses.

One implication of this suggestion is that while the finishing times of a high cloze response
would very rarely be far from its mean, a finishing time far from the mean is less rare for a low cloze
response (since its finishing times distribution is much wider). Therefore, when a low cloze word is
produced as a cloze response to a high constraint sentence, this is likely not because the finishing time
of the high cloze alternative was much longer than its mean finishing time, allowing the low cloze word
to 'win the race® despite a relatively long finishing time, but rather since the finishing time of the
produced low cloze response was much shorter than its mean finishing time, overtaking the high cloze
alternative.

Our results are in line with the suggestion of Nakamura and Phillips (2020). In the current study,
the amplitude of the P600 pre-updating effect was similar in the two high constraint conditions. This
result would only be expected if in most trials in which a low cloze probability word was produced as a
cloze response to a high constraint sentence, this word won the race because it was highly activated, and
was therefore also pre-updated. If instead we assume that a high cloze word is just as likely to have a
finishing time far from its mean as a low cloze word is, then in a significant portion of the trials in this
condition the activation of the low cloze word was not exceptionally high but it won the race because of
exceptionally low activation for the high cloze alternative. This assumption would thus predict a smaller
P600 pre-updating effect in this condition relative to when a high cloze word is produced, since pre-
updating would only occur in a portion of the trials in the high constraint low cloze condition, compared
to most or all of the trials in the high constraint high cloze condition. Importantly, the lack of difference
between the P600 pre-updating effect in the two high constraint conditions is a null result, hence the
current study does not provide a statistically significant result supporting differential noise levels. Our
results are thus compatible with this suggestion, but further research is needed in order to provide

corroborating evidence.

4.5) Previous findings on the generation of predictions
In the current study, the critical word for the ERP analysis was the verb after which a highly probable
word was available (in the high constraint sentences). This means that we did not look at the processing
of predictable or unpredictable words, but on the processes that take place prior — when the prediction is
generated. A few previous studies have looked at the stage of generating predictions (Li, Zhang, Xia, &
Swaab, 2017; Rommers et al., 2017; Fruchter et al., 2015, Ness & Meltzer-Asscher, 2018a; Ding, Wang,
& Yang, 2020)**. As discussed above, our current results replicate the P600 pre-updating effect observed

15 Several studies looked at the word prior to a (potentially) predictable word using a pre-nominal article that is
or is not consistent with the predictable noun (e.g. Delong et al. ,2005; Martin et al., 2013; Niewland et al.,
2017; Nicenboim, Vasishth, & Rosler, 2019; Szewczyk & Wodniecka, 2020; van Berkum et al., 2005; Wicha,
Moreno, & Kutas, 2004). However, at the article the prediction has already been generated. These studies
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in Ness and Meltzer-Asscher (2018b). However, different effects were observed in earlier studies (L1,
Zhang, Xia, & Swaab, 2017; Rommers et al., 2017; Fruchter et al., 2015). Notably, the design and
materials in these studies differed considerably from the current study, and from one another, leading to
these inconsistent results. A discussion of these differences, and their bearing on the results, can be found
in Ness & Meltzer-Asscher (2018a).

A more recent study (Ding, Wang, & Yang, 2020) is seemingly very similar to the current study.
As in the current study, high and low constraint sentences were compared and ERPs were measured on
a verb prior to the predictable noun. However, in contrast to the P600 pre-updating effect we observed,
the results of Ding et al. (2020) showed a sustained anterior negativity (SAN). Crucially, however, the
experiment by Ding et al. (2020) included an additional manipulation, the emotional content of the verbs.
Therefore, the high and low constraint sentences had two versions each, one with an emotionally
positive/negative verb, and one with an emotionally neutral verb. This meant that the materials had to be
constructed in a way that would allow for the manipulation of the verb not to have an influence on the
predictability of the following noun. i.e. the prediction of the noun in the high constraint sentences had
to be based only on semantically related words prior to the verb, and the verb itself did not contribute
much to the prediction. This can explain why a SAN was observed: this effect may reflect holding a
prediction that is expected to be realized at a later point, resulting in increased memory load (Ness &
Meltzer-Asscher, 2018a). A similar result was observed when a prediction regarding an upcoming noun
had to be held in memory across an (unpredictable) adjective in Li, Zhang, Xia, and Swaab (2017).

On the other hand, in the vast majority of our materials, the prediction could not be generated
before the critical verb and independently of it. For example, in a sentence such as ‘The bridesmaids
waited breathlessly for the bride to wear the dress’, although a broad prediction related to weddings can
be formed prior to the verb, at this point the sentence can continue in several ways, causing activation of
several different nouns (e.g. throw the bouquet, walk down the aisle, cut the cake, and so on). Only once
the verb appears, a specific, strong prediction (of ‘dress’) can be made. Additionally, this prediction can
be integrated immediately, since no additional content words appear between the formation of the
prediction and its expected position. Hence, we would not expect a SAN effect in our study since there
is no need to hold a prediction. Instead, we expect the P600 effect reflecting the integration of the
predicted noun, as indeed observed in our results.

As pointed out in Ness & Meltzer-Asscher (2018a), these seemingly inconsistent results observed
in different studies looking at the generation of predictions highlight the fact that when forming
hypotheses or interpreting results we must take into account factors that affect the nature of the
predictions that are being generated (e.g. the immediacy of the predicted content, the predictive validity
within the experimental context, etc.). The generation of predictions is not a single uniform process.
Prediction can encompass several processes, some of which only take place under certain circumstances.
It is also interesting to compare our results to those of Ness & Meltzer-Asscher (2018a). A visual
inspection of the P600 pre-updating effect on the verb in both studies suggests that the magnitude of this
effect was greater in the current study. We can think of two likely causes for this increased effect: i. The
higher predictive validity in the current study. As explained in the Introduction, Ness & Meltzer-Asscher
(2018a) proposed that the retrieval threshold is variable. If indeed pre-updating has both benefits (when

therefore test if and how the prediction, generated before the article, is altered, rather than investigating the
process of generating the prediction.
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successful) and costs (when unsuccessful), then different situations may vary in how beneficial it is for a
comprehender to engage in pre-updating. For example, in a situation where unexpected input is often
encountered even in high constraint, the costs of prediction failure may outweigh the benefit derived
from facilitation of processing successfully predicted words. On the other hand, in a situation in which
the input is noisy and bottom-up evidence is less reliable, the benefits of forming strong predictions may
be greater. In the current experiment, the predictive validity can be considered to be 100%, since the
participant provided the completions themselves, and their prediction was therefore never disconfirmed.
Therefore, strong predictions are encouraged. ii. the speeded cloze task in the current study presumably
provided more motivation for prediction relative to when participants only had to read for
comprehension (i.e. answer a comprehension questions following the sentence). Future studies may test
whether factors such as predictive validity, noisy vs. salient input, task demands, etc. in fact cause
adaptation of the tendency to pre-update.

4.6) Replicability and reliability of results

In light of recent studies indicating a “replication crisis” in many research domains (e.g. Errington et al.,
2014; Open Science Collaboration, 2015), the invaluable role of replication within the scientific process
has become widely acknowledged (e.g. Benson, & Borrego, 2015; Bruna et al., 2017; Burman, Reed, &
Alm, 2010; Fahs, Morgan, & Kalman, 2003; Sukhtankar, 2017), prompting replication attempts within the
sentence processing literature (e.g. Nieuwland et. al., 2018; Nicenboim, Vasishth, & Rosler, 2019). The
design of the current study enabled us to replicate the findings of Staub and colleagues (2015) regarding
the effects of cloze probability and constraint on production latencies, as well as Ness & Meltzer-
Asscher’s (2018a) P600 pre-updating effect on the verb.

First, the behavioral results replicate the findings of Staub et al. (2015), showing the independent
effects of cloze probability and constraint on production onsets. The fact that these findings were
replicated in the current study using different materials and in a different language provides a very strong
support not only for the replicability of the results, but also for the generalizability of the effects.
Additionally, the EEG results replicate the P600 pre-updating effect found in high constraint sentences,
prior to the (potentially) high cloze word, as well as the correlation between this P600 effect and WM
performance (Ness & Meltzer-Asscher, 2018a). The current experiment differed from Ness & Meltzer-
Asscher (2018a) in that it included a cloze (production) task, while in the previous study the sentences
were only read for comprehension. Nonetheless, we view the results at the verb as a replication of the
results of Ness & Meltzer-Asscher (2018a) since this point in the sentence is prior to when participants
were prompted to produce a completion (in the current experiment) and the processes taking place at this
point are likely similar despite the different task.

Finally, and not directly related to the main aims of the current study, having two datasets of
cloze responses to the same items allowed us to assess the reliability of cloze data and the influence of
the task procedure (i.e. speeded vs. offline). The results indicated a high reliability: when two different
participant groups, sampled from the same general population (i.e. native Hebrew speaking, 18-40 years
old, Tel-Aviv University students), provided cloze responses to the same items, highly similar values
ware obtained. This held true even though the compared datasets were obtained in speeded and non-
speeded tasks. This conclusion provides methodological validation for the highly prevalent use of cloze
data in creating experimental materials. Additionally, as pointed out by Staub et al. (2015), it also provides
justification to infer general conclusions from reaction time results in the speeded task, that apply to the
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common (non-speeded) task as well, since there is no ground to assume distinct generation processes in
the two tasks.

5) Conclusion
The results of the current study indicate that an improbable word can, in some cases, be strongly
predicted. This was shown to occur prior to when a speaker provides an improbable completion for a
high constraint sentence in the cloze task. In these cases, the produced word (reflecting the participant’s
strongest prediction at that moment) is not only pre-activated strongly, but it can also be pre-updated (i.e.
integrated into the sentence’s representation in WM), which involves commitment to the prediction.
These findings support an activation race mechanism for the initiation of pre-updating, whereby
multiple parallel predictions compete for activation. The activation of a given word is influenced by its
probability, but also by noise or idiosyncratic influences. The most probable word, which receives the
most activation from the sentence, would most often be the first to pass retrieval threshold. Nonetheless,
a low cloze word would in some cases be strongly pre-activated, passing retrieval threshold prior to the
high cloze competitor. Such a mechanism accounts for both the occurrence of pre-updating
(demonstrated in the current study) and the generation of cloze responses (demonstrated by Staub et. al.,
2015, and replicated in the current study), namely the first word to pass retrieval threshold would be
integrated into the sentence’s representation in WM, and/or produced as a cloze response.
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3 Discussion

3.1 A model of lexical prediction

Prediction during language processing has been extensively studied over the past decades. The current
work focused on the specific mechanisms that underlie lexical prediction in language processing,
establishing a distinction between two prediction processes: pre-activation and pre-updating. In a series
of ERP and behavioral experiments, we provided evidence indicating that multiple predictions are
simultaneously activated (interacting with each other), and once a highly activated prediction passes
retrieval threshold it is pre-updated, i.e. integrated into the sentence representation. We showed that pre-
updating is reflected in the P600 component on a word prior to the predicted word (where the prediction
can be generated), and that the tendency to pre-update depends on the individual’s WM abilities. We
additionally provided a computational account for the pattern of influence of simultaneously pre-
activated words on each other.

Taken together, these results provide support for several main aspects of my view, detailed in
the Introduction, about prediction processes within the processing stages of a word (for more details also
see Figure 1 and Discussion in chapter 2.1 above, Ness & Meltzer-Asscher, 2018a). Based on this view,
pre-activation is ‘unavoidable’, it always occurs; multiple possible predictions are pre-activated to
different extents, with the activation level of each word influenced by several factors such as spreading
activation from prior words, the probability of the word given the input, properties of the word (e.g.
frequency), etc. The current results (Ness & Meltzer-Asscher, 2021a) support the idea that multiple
predictions are simultaneously pre-activated, as well as show that the activation level of a pre-activated
word is influenced, among other factors, by the alternative predictions that are simultaneously activated.

Pre-updating, on the other hand, does not always occur. This process is only initiated when the
activation level of a certain prediction is strong enough to pass a retrieval threshold, prior to the
realization of the word in the input. Thus, pre-updating would usually be performed for highly probable
predictions. However, due to the noisy nature of activations, pre-updating would occasionally be
performed for improbable predictions as well. The current results provide evidence for the occurrence
of pre-updating in high constraint sentences (Ness & Meltzer-Asscher, 2018b, 2021b), as well as for an
activation threshold as the trigger for pre-updating (Ness & Meltzer-Asscher, 2021b).

Another important aspect of this view is that the threshold for pre-updating is variable. It can differ
between individuals (due to individual differences in cognitive abilities), as well as be adapted to
different situations (due to factors such as task demands, predictive validity, etc.), thus providing a
mechanism to balance the benefits of pre-updating when it is successful and the costs incurred when a
pre-updated prediction is disconfirmed. The need for such a mechanism stems from the assumption that
disconfirmation of a pre-updated prediction incurs prediction failure costs, such as the need to inhibit the
falsely predicted word in order to allow integration of another word, as shown in Ness & Meltzer-
Asscher, 2018a (not included in this dissertation). The current results provide evidence that the tendency
to pre-update is indeed variable between individuals. Specifically, we showed that individuals with
better WM abilities (reflected in higher reading span scores) display a greater tendency to pre-update
(Ness & Meltzer-Asscher, 2018b, 2021b). In another study, not included in this dissertation, we also
provide evidence of adaptation of prediction strength, based on predictive validity (Ness & Meltzer-
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Asscher, 2021c). In that study we manipulated the predictive validity in the experimental context
(between participants), and observed that prediction failure costs decreased as the participant learned that
the predictive validity in the experiment is low. This suggests that the threshold for pre-updating may be
adjusted to adapt to different situations (see farther discussion below).

The view presented in this work highlights the notion that prediction is not one uniform process;
rather, prediction can encompass different processes, some of which are initiated only under certain
circumstances (i.e. pre-updating and inhibition). Surely, some aspects of this view remain to be tested
(see below for some of the open questions), and may therefore need to be further developed or changed
based on future evidence; however, a main contribution of the current view is that it explicitly discusses
not only the processes involved in prediction, but also how and when each process is initiated. In
proposing and detailing the different mechanisms, it provides an explanation for individual differences
as well as for adaptation of prediction (via the variable threshold for pre-updating). Additionally, it helps
reconcile the evidence of prediction failure costs with the evidence for prediction of specific words. As
discussed in the Introduction, predicting specific words would be a “low pay-off” processing strategy, if
prediction failure costs exist, since prediction of specific words are highly likely to be contradicted by
the input (Forster, 1981; Jackendoff, 2002). Nonetheless, there exist both evidence for prediction of
specific words (Delong, Urbach, & Kutas, 2005; Martin et al., 2013; Nieuwland et al., 2018; Nicenboim,
Vasishth, & Rosler, 2020; Szewczyk & Wodniecka, 2020; van Berkum et al., 2005; Wicha, Moreno, &
Kutas, 2004), and for prediction failure costs (Federmeier et al., 2007; Kuperberg, Brothers, & Wlotko,
2020; Ness & Meltzer-Asscher, 2018a). The current view helps reconcile these findings by explaining
how prediction can remain a beneficial processing strategy. Namely, we propose that prediction failure
costs are contingent on the occurrence of pre-updating, and pre-updating is controlled via a (variable)
threshold mechanism, preventing prediction failure costs when prediction is uncertain. Hence, the
distinction between pre-activation and pre-updating, and the threshold between them, allow to maintain
a balance such that when it is not likely to be beneficial to commit to a specific prediction, due to a high
probability of failure (e.g. in a low constraint context, and/or when predictive validity is low), prediction
will only manifest in graded pre-activation, and will not incur failure costs; and only when committing
to a specific prediction has a high probability of success (e.g. in a high constraint context, when predictive
validity is not low), such commitment is engaged in, i.e. pre-updating occurs. This way, the generation

of specific word predictions does not entail a frequent occurrence of prediction failure costs.

3.2 Open questions and future directions

3.2.1  Pre-updating and inhibition
As mentioned above, a main assumption of my view is that disconfirmation of a pre-updated prediction
incurs prediction failure costs, that are not incurred for the processing of an unexpected word if no
prediction was pre-updated in the first place. Specifically, in Ness & Meltzer-Asscher (2018a, not
included in this dissertation) we suggested that these costs stem from a need to inhibit the falsely
predicted word (but see also Kuperberg, Brothers, and Wlotko, 2020, who argue that these costs reflect
suppression of an event representation rather than inhibition at the word level). In that study, we looked
at high constraint sentences, ending with either the predictable word, a congruent unexpected word, or
an anomalous word. Using CMLP, we showed that the highly predicted word is strongly activated prior
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to its anticipated appearance, but is then inhibited if a congruent unexpected word appears instead (but
see Federmeier & Rommers, 2018, for indication that disconfirmed predictions may not be fully
inhibited). Interestingly, this inhibition is not observed if an anomalous word appears. Since inhibition
of the falsely predicted word does not take place when encountering an anomaly, we have argued that
this inhibition is required particularly to enable integration of the word that actually appeared in the input
(see Kutas 1993, and Ness & Meltzer-Asscher, 2018a, for further discussion of this claim).

The assumption that pre-updating involves integration of the prediction into the sentence
representation makes the association between pre-updating and inhibition very intuitive, i.e. the
integration of a prediction into the sentence representation is what causes the need to inhibit it if another
word needs to be integrated instead. However, thus far we have not provided direct evidence for this
relation. Namely, we demonstrated inhibition under conditions in which pre-updating is likely to occur,
i.e. the behavioral inhibition and the f-PNP ERP component were observed in high constraint sentences
(Ness & Meltzer-Asscher, 2018a), and prediction failure costs were greater when predictive validity in
the experimental context was high (Ness & Meltzer-Asscher, 2021c), but we have not directly shown that
inhibition occurs only when pre-updating has previously occurred. Obtaining direct evidence for the
relation between pre-updating and inhibition poses some methodological challenges, since it is not
sufficient to demonstrate that, across participants and/or trials, both pre-updating and inhibition occur
under the same circumstances (since these circumstances may independently cause both pre-updating
and inhibition, without a direct link between the two processes). Rather, a more direct evidence would
require a demonstration that when comparing two similar trials, which differ only in whether the specific
participant in that moment in time preformed pre-updating or not, inhibition only occurs if pre-updating
has occurred (in that specific trial), but not if pre-updating has not occurred.

3.2.2 Individual differences in prediction processes

The current work provided indication that individual differences in WM abilities affect the tendency to
pre-update, by demonstrating correlation between the pre-updating P600 effect and reading span scores
(Ness & Meltzer-Asscher, 2018b, 2021b). Notably, reading span scores are a relatively non-specific
measure, which may be influenced by multiple cognitive constructs (see e.g. Daneman & Hannon, 2007;
Miyake, 2001). Moreover, additional cognitive abilities that are not necessarily reflected in reading span
scores may affect the tendency to pre-update. For example, it is likely that the tendency to pre-update is
influenced not only by resources available to allow pre-updating to occur, but also from the ability to
successfully recover when a pre-updated prediction is disconfirmed. Hence, it would be expected that
individuals with better ability to perform inhibition would have a greater tendency to pre-update (as the
‘risk” is smaller for them). Future work can focus on identifying additional factors that modulate
individual differences in the tendency to pre-update, by employing a wider variety of tasks. Potentially,
the tendency to pre-update may be correlated with individual differences in the ability to generate
accurate predictions (e.g. language proficiency, statistical learning abilities), the ability to perform pre-
updating (e.g. WM-related abilities, general processing speed), and the ability to recover from a
disconfirmed pre-updated prediction (e.g. the ability to inhibit irrelevant distractors).
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3.2.3  Adaptation of the retrieval threshold
In a recent study we have shown that comprehenders can adapt their prediction processes to different
situations, such that prediction failure costs are reduced if the participant estimates that the predictive
validity in the experimental context is low (Ness & Meltzer-Asscher, 2021c). We argue that a plausible
mechanism for such adaptation is the adjustment of the threshold for pre-updating. Namely,
comprehenders alleviate prediction failure costs when prediction validity is low by raising the threshold,
thus avoiding pre-updating, which prevents the prediction failure costs associated with disconfirmation
of pre-updated predictions. Importantly, since the experiments reported in Ness & Meltzer-Asscher
(2021c) are behavioral, only the effect of prediction failure is measured (prolonged reading times for
disconfirmed predictions), with no direct indication of pre-updating (as would be reflected by the P600
pre-updating effect). In order to support the aforementioned adaptation mechanism, there is a need to
conduct a similar study but with the addition of ERP recording, which would allow to examine whether
the occurrence of pre-updating (reflected in the P600 effect) is indeed reduced when the participant’s
estimate of predictive validity is lowered.

More broadly, if the threshold for pre-updating is indeed adjustable, there may be additional
factors (other than predictive validity) which can trigger its adjustment. Since the threshold is
hypothesized to keep the balance between the benefits of successful prediction and the costs of prediction
failure, identifying the specific factors that trigger adaptation may inform us about what makes
prediction beneficial. Several potential benefits have been suggested for the use of prediction as a
language processing strategy (see Huettig, 2015, for discussion of motivations for prediction). For
example, prediction may be helpful in reducing the ambiguity that exists in most linguistic input, either
due to semantically/grammatically ambiguous utterances or due to perceptual ambiguity (e.g. arising
from noisy input and production variation), by constraining the interpretation of the input to more
probable meanings/representations. Additionally, prediction has also been argued to enable coordinated
‘turn taking’ during dialogue. The specific benefits comprehenders derive from prediction determine
what factors should influence how beneficial prediction is in different situations. For example, if
prediction is indeed helpful in disambiguating perceptually ambiguous input, then it may be more
beneficial to generate strong predictions in a noisy environment than in a quiet one; if prediction is
needed to coordinate ‘turn taking’, it may be more beneficial to generate strong predictions during a
conversation than during passive listening (e.g. listening to a lecture or watching a movie). Thus, further
work can examine additional factors, such as noise and task demands, which may trigger adaptation of
the threshold for pre-updating.

3.2.4  Prediction processes in neurodiverse populations
Several studies have shown decreased predictive abilities in language processing in older adults (e.g.
Dave et al., 2018; DelLong et al., 2012; Wlotko, Federmeier, & Kutas, 2012), and in different
neurocognitive disorders (e.g. in aphasia: Hanne et al., 2015; Warren, Dickey, & Lei, 2016). A better
understanding of the specific mechanisms that underlie prediction can help provide a more accurate
account of the impaired processes in each population. For example, recent studies on prediction in older
adults indicate differential influence of age on N400 effects and on PNP effects (Dave et al., 2018;
Wilotko, Federmeier, & Kutas, 2012). This may suggest that pre-activation and pre-updating are
differentially affected by aging, but further research is needed in order to support this claim. Similarly,
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further research is needed in order to identify how pre-activation and pre-updating are affected in

different neurocognitive disorders.

4  References for Introduction and Discussion

Allopenna, P. D., Magnuson, J. S., & Tanenhaus, M. K. (1998). Tracking the time course of spoken word
recognition using eye movements: Evidence for continuous mapping models. Journal of
Memory and Language, 38(4), 419—439.

Altmann, G. T., & Kamide, Y. (1999). Incremental interpretation at verbs: Restricting the domain of
subsequent reference. Cognition, 73(3), 247—264.

Altmann, G. T., & Kamide, Y. (2007). The real-time mediation of visual attention by language and world
knowledge: Linking anticipatory (and other) eye movements to linguistic processing. Journal of
Memory and Language, 57(4), 502—518.

Arai, M., & Keller, F. (2013). The use of verb-specific information for prediction in sentence processing.
Language and Cognitive Processes, 28(4), 525—-560.

Boland, J. E. (2005). Visual arguments. Cognition, 95(3), 237-274.

Brothers, T., Dave, S., Hoversten, L. J., Traxler, M. J., and Swaab, T. Y. (2019). Flexible predictions
during listening comprehension: speaker reliability affects anticipatory processes.
Neuropsychologia 135:107225.

Brothers, T., Swaab, T. Y., and Traxler, M. J. (2017). Goals and strategies influence lexical prediction
during sentence comprehension. Journal of Memory and Language, 93, 203-216.

Brothers, T., Swaab, T. Y., & Traxler, M. J. (2015). Effects of prediction and contextual support on
lexical processing: Prediction takes precedence. Cognition, 136, 135-149.

Brouwer, H., Crocker, M. W., Venhuizen, N. J., & Hoeks, J. C. (2017). A neurocomputational model of
the N400 and the P600 in language processing. Cognitive science, 41, 1318-1352.

Brouwer, H., Fitz, H., & Hoeks, J. (2012). Getting real about semantic illusions: rethinking the functional
role of the P600 in language comprehension. Brain research, 1446, 127-143.

Brown, C., & Hagoort, P. (1993). The processing nature of the N400: Evidence from masked priming.
Journal of cognitive neuroscience, 5(1), 34-44.

Bubic, A., Von Cramon, D. Y., & Schubotz, R. I. (2010). Prediction, cognition and the brain. Frontiers in
human neuroscience, 4, 25.

Clark, A. (2015). Radical predictive processing. The Southern Journal of Philosophy, 53, 3-27.

Chambers, C. G., Tanenhaus, M. K., & Magnuson, J. S. (2004). Actions and affordances in syntactic
ambiguity resolution. Journal of Experimental Psychology: Learning, Memory, and Cognition,
30(3), 687—696.

Chen, Q., & Mirman, D. (2012). Competition and cooperation among similar representations: toward a
unified account of facilitative and inhibitory effects of lexical neighbors. Psychological review,
119(2), 417.

Chow, W. Y., & Phillips, C. (2013). No semantic illusions in the “Semantic P600” phenomenon: ERP
evidence from Mandarin Chinese. Brain research, 1506, 76-93.

Dambacher, M., Kliegl, R., Hofmann, M., & Jacobs, A. M. (2006). Frequency and predictability effects
on event-related potentials during reading. Brain Research, 1084(1), 89-103.

93



Daneman, M., & Hannon, B. (2007). What do working memory span tasks like reading span really
measure. In N. Osaka, R. H. Logie, & M. D’Esposito (Eds) The cognitive neuroscience of
working memory (pp. 21-42). Oxford University Press.

Dave, S., Brothers, T. A., Traxler, M. J., Ferreira, F., Henderson, J. M., & Swaab, T. Y. (2018).
Electrophysiological evidence for preserved primacy of lexical prediction in aging.
Neuropsychologia, 117, 135-147.

DeLong, K. A., Groppe, D. M., Urbach, T. P., & Kutas, M. (2012). Thinking ahead or not? Natural aging
and anticipation during reading. Brain and language, 121(3), 226-239.

DeLong, K. A., Urbach, T. P., & Kutas, M. (2005). Probabilistic word pre-activation during language
comprehension inferred from electrical brain activity. Nature Neuroscience, 8 (8),1117—1121.

Dikker, S., Rabagliati, H., Farmer, T. A., & Pylkkidnen, L. (2010). Early occipital sensitivity to syntactic
category is based on form typicality. Psychological Science, 21(5), 629—634.

Ehrlich, S. F., & Rayner, K. (1981). Contextual effects on word perception and eye movements during
reading. Journal of Verbal Learning and Verbal Behavior, 20(6), 641-655.

Farmer, T. A., Christiansen, M. H., & Monaghan, P. (2006). Phonological typicality influences on-line
sentence comprehension. Proceedings of the National Academy of Sciences, USA, 103(32),
12203-12208.

Federmeier, K. D. (2007). Thinking ahead: The role and roots of prediction in language comprehension.
Psychophysiology, 44(4), 491-505.

Federmeier, K. D., & Kutas, M. (1999). A rose by any other name: Long-term memory structure and
sentence processing. Journal of Memory and Language, 41(4), 469—495.

Federmeier, K.D., Laszlo, S., 2009. Time for meaning: electrophysiology provides insights into the
dynamics of representation and processing in semantic memory. Psychology of learning and
motivation. 51, 1-44

Federmeier, K. D., Wlotko, E. W., De Ochoa-Dewald, E., & Kutas, M. (2007). Multiple effects of

sentential constraint on word processing. Brain research, 1146, 75-84.

Felser, C., Clahsen, H., & Miinte, T. F. (2003). Storage and integration in the processing of filler-gap
dependencies: An ERP study of topicalization and wh-movement in German. Brain and
Language, 87(3), 345-354.

Fiebach, C. J., Schlesewsky, M., & Friederici, A. D. (2002). Separating syntactic memory costs and
syntactic integration costs during parsing: The processing of German WH-questions. Journal
of Memory and Language, 47(2), 250-272.

Forster, K. I. (1981). Priming and the effects of sentence and lexical contexts on naming time: Evidence
for autonomous lexical processing. The Quarterly Journal of Experimental Psychology, 33(4),
465-495.

Frisson, S., Harvey, D. R., & Staub, A. (2017). No prediction error cost in reading: Evidence from eye
movements. Journal of Memory and Language, 95, 200-214.

Garnsey, S. M., Pearlmutter, N. J., Myers, E., & Lotocky, M. A. (1997). The contributions of verb bias
and plausibility to the comprehension of temporarily ambiguous sentences. Journal of Memory
and Language, 37(1), 58—93.

Gibson, E., & Wu, H. H. . (2013). Processing Chinese relative clauses in context. Language and Cognitive
Processes, 28 (1-2), 125—-155.

94



Gouvea, A. C., Phillips, C., Kazanina, N., & Poeppel, D. (2010). The linguistic processes underlying the
P600. Language and cognitive processes, 25(2), 149-188.

Hagoort, P., Baggio, G., & Willems, R. M. (2009). Semantic unification. In M. S. Gazzaniga (Ed.) The
cognitive neurosciences, 4th ed. (pp. 819-836). MIT press.

Hagoort, P., Brown, C. M, & Groothusen, J. (1993). The syntactic positive shift (SPS) as an ERP measure
of syntactic processing. Language and cognitive processes, 8(4), 439-483.

Hagoort, P., Brown, C. M., & Osterhout, L. (1999). The neurocognition of syntactic processing. In 7he
neurocognition of language (pp. 273-317). Oxford University Press.

Hanne, S., Burchert, F., De Bleser, R., & Vasishth, S. (2015). Sentence comprehension and morphological
cues in aphasia: What eye-tracking reveals about integration and prediction. Journal of
Neurolinguistics, 34, 83-111.

Hare, M., McRae, K., & Elman, J. L. (2003). Sense and structure: Meaning as a determinant of verb
subcategorization preferences. Journal of Memory and Language, 48(2), 281—303.

Heitz, R. P. (2014). The speed-accuracy tradeoff: history, physiology, methodology, and behavior.
Frontiers in neuroscience, 8, 150.

Hoeks, J. C., Stowe, L. A., & Doedens, G. (2004). Seeing words in context: the interaction of lexical and
sentence level information during reading. Cognitive brain research, 19(1), 59-73.

Hohwy, J. (2018). The predictive processing hypothesis. In A., Newen, L., De Bruin, & S., Gallagher
(Eds.) The Oxford handbook of 4F cognition (pp. 129-145), Oxford University Press.

Huettig, F. (2015). Four central questions about prediction in language processing. Brain research, 1626,
118-135.

Hutchison, K. A. (2007). Attentional control and the relatedness proportion effect in semantic priming.
Journal of Experimental Psychology: Learning, Memory, and Cognition, 33(4), 645.

Ito, A., Corley, M., Pickering, M. J., Martin, A. E., & Nieuwland, M. S. (2016). Predicting form and
meaning: Evidence from brain potentials. Journal of Memory and Language, 86, 157-171.

Jackendoff, R. 2002. Foundations of language: brain, meaning, grammar, evolution. New York: Oxford
University Press.

Jackson, S. A., Kleitman, S., Howie, P., & Stankov, L. (2016). Cognitive abilities, monitoring confidence,
and control thresholds explain individual differences in heuristics and biases. Frontiers in
Psychology, 7, 1559.

James, W. (1890). The Principles of Psychology, Vol. 1. New York: Dover Publications.

Kaan, E., Harris, A., Gibson, E., & Holcomb, P. (2000). The P600 as an index of syntactic integration
difficulty. Language and cognitive processes, 15(2), 159-201.

Kamide, Y., Altmann, G. T., & Haywood, S. L. (2003). The timecourse of prediction in incremental
sentence processing: Evidence from anticipatory eye movements. Journal of Memory and
Language, 49, 133—-156.

Kim, A., & Osterhout, L. (2005). The independence of combinatory semantic processing: Evidence from
event-related potentials. Journal of memory and language, 52(2), 205-225.

Kutas, M. (1993). In the company of other words: Electrophysiological evidence for single-word and
sentence context effects. Language and cognitive processes, 8(4), 533-572.

Kutas, M., & Federmeier, K. D. (2000). Electrophysiology reveals semantic memory use in language
comprehension. 7rends in cognitive sciences, 4(12), 463-470.

95



Kutas, M., & Federmeier, K. D. (2011). Thirty years and counting: finding meaning in the N400
component of the event-related brain potential (ERP). Annual review of psychology, 62, 621-647.

Kutas, M., & Hillyard, S. A. (1980). Reading senseless sentences: Brain potentials reflect semantic
incongruity. Science, 207(4427), 203-205.

Kutas, M., & Hillyard, S. A. (1984). Brain potentials during reading reflect word expectancy and semantic
association. MNature, 307(5947), 161-163.

Kutas, M., Lindamood, T. E., & Hillyard, S. A. (1984). Word expectancy and event-related brain
potentials during sentence processing. In: S. Kornblum, & J. Requin (Eds.), Preparatory States
and Processes (pp. 217-237). Hillsdale, NJ: Lawrence Erlbaum.

Kuperberg, G. R., Brothers, T., & Wlotko, E. W. (2020). A Tale of Two Positivities and the N400: Distinct
neural signatures are evoked by confirmed and violated predictions at different levels of
representation. Journal of cognitive neuroscience, 32(1), 12-35.

Kuperberg, G. R., & Jaeger, T. F. (2016). What do we mean by prediction in language comprehension?.
Language, cognition and neuroscience, 31(1), 32-59.

Kuperberg, G. R., Kreher, D. A., Sitnikova, T., Caplan, D. N., & Holcomb, P. J. (2007). The role of
animacy and thematic relationships in processing active English sentences: Evidence from
event-related potentials. Brain and language, 100(3), 223-237.

Kuperberg, G. R., Paczynski, M., & Ditman, T. (2011). Establishing causal coherence across sentences:
an ERP study. Journal of Cognitive Neuroscience, 23(5), 1230—1246.

Lau, E. F., Holcomb, P. J., & Kuperberg, G. R. (2013). Dissociating N400 effects of prediction from
association in single-word contexts. Journal of Cognitive Neuroscience, 25(3), 484-502.

Luke, S. G., & Christianson, K. (2016). Limits on lexical prediction during reading. Cognitive
Psychology, 88, 22-60.

Martin, C. D., Thierry, G., Kuipers, J. R., Boutonnet, B., Foucart, A., & Costa, A. (2013). Bilinguals
reading in their second language do not predict upcoming words as native readers do. Journal of
Memory and Language, 69(4), 574-588. https: /7doi.org/10.1016/j.jml.2013.08.001

Miyake, A. (2001). Individual differences in working memory: Introduction to the special section.
Journal of Experimental Psychology: General, 130(2), 163.

Neely, J. H. (1977). Semantic priming and retrieval from lexical memory: Roles of inhibitionless
spreading activation and limited-capacity attention. Journal of Experimental Psychology:
General, 106(3), 226.

Ness, T., & Meltzer-Asscher, A. (2018a). Lexical inhibition due to failed prediction: Behavioral evidence
and ERP correlates. Journal of experimental psychology: Learning, memory, and cognition,
44(8), 1269.

Ness, T. & Meltzer-Asscher, A. (2018b). Predictive pre-updating and working memory capacity:
Evidence from event-related potentials. Journal of Cognitive Neuroscience, 30(12), 1916-1938.

Ness, T. & Meltzer-Asscher, A. (2021a). Love thy neighbor: facilitation and competition between parallel
predictions. Cognition, 207, 104509.

Ness, T. & Meltzer-Asscher, A. (2021b). From pre-activation to pre-updating: A threshold mechanism
for commitment to strong predictions. Psychophysiology, 58(5), €13797.

Ness, T. & Meltzer-Asscher, A. (2021c). Rational adaptation in lexical prediction: The influence of
prediction strength. Frontiers in Psychology, 12, 1166.

96


https://doi.org/10.1016/j.jml.2013.08.001

Nicenboim, B., Vasishth, S., & Résler, F. (2020). Are words pre-activated probabilistically during
sentence comprehension? Evidence from new data and a Bayesian random-effects meta-analysis
using publicly available data. Neuropsychologia, 142, 107427.

Nieuwland, M. S., Politzer-Ahles, S., Heyselaar, E., Segaert, K., Darley, E., Kazanina, N., ... & Méziere,
D. (2018). Large-scale replication study reveals a limit on probabilistic prediction in language
comprehension. ELife, 7, €33468.

Nieuwland, M. S., Barr, D. J., Bartolozzi, F., Busch-Moreno, S., Darley, E., Donaldson, D. I, ... & Von
Grebmer Zu Wolfsthurn, S. (2020). Dissociable effects of prediction and integration during
language comprehension: Evidence from a large-scale study using brain potentials.
Philosophical Transactions of the Royal Society B, 375(1791), 20180522.

Osterhout, L., & Holcomb, P. J. (1992). Event-related brain potentials elicited by syntactic anomaly.
Journal of memory and language, 31(6), 785-806.

Osterhout, L., Holcomb, P. J., & Swinney, D. A. (1994). Brain potentials elicited by garden-path
sentences: evidence of the application of verb information during parsing. Journal of
Experimental Psychology: Learning, Memory, and Cognition, 20(4), 786.

Paczynski, M., & Kuperberg, G. R. (2011). Electrophysiological evidence for use of the animacy
hierarchy, but not thematic role assignment, during verb argument processing. Language and
Cognitive Processes, 26(9), 1402—1456.

Paczynski, M., & Kuperberg, G. R. (2012). Multiple influences of semantic memory on sentence
processing: Distinct effects of semantic relatedness on violations of real-world event/ state
knowledge and animacy selection restrictions. Journal of Memory and Language, 67(4), 426—448.

Phillips, C., Kazanina, N., & Abada, S. H. (2005). ERP effects of the processing of syntactic long-distance
dependencies. Cognitive Brain Research, 22(3), 407-428.

Rohde, H., Levy, R., & Kehler, A. (2011). Anticipating explanations in relative clause processing.
Cognition, 118(3), 339—358.

Rommers, J., & Federmeier, K. D. (2018). Lingering expectations: A pseudo-repetition effect for words
previously expected but not presented. Neurolmage, 183, 263-272.

Schwanenflugel, P. J., & LaCount, K. L. (1988). Semantic relatedness and the scope of facilitation for
upcoming words in sentences. Journal of Experimental Psychology: Learning, Memory, and
Cognition, 14(2), 344.

Schwanenflugel, P. J., & Shoben, E. J. (1985). The influence of sentence constraint on the scope of
facilitation for upcoming words. Journal of Memory and Language, 24(2), 232-252.

Stanovich, K. E., & West, R. F. (1983). On priming by a sentence context. Journal of Experimental
Psychology: General, 112(1), 1.

Staub, A., Grant, M., Astheimer, L., & Cohen, A. (2015). The influence of cloze probability and item
constraint on cloze task response time. Journal of Memory and Language, 82, 1-17.

Szewczyk, J. M., & Wodniecka, Z. (2020). The mechanisms of prediction updating that impact the
processing of upcoming word: An event-related potential study on sentence comprehension.
Journal of Experimental Psychology: Learning, Memory, and Cognition.

Tanenhaus, M. K., Spivey-Knowlton, M. J., Eberhard, K. M., & Sedivy, J. C. (1995). Integration of visual
and linguistic information in spoken language comprehension. Science, 268 (5217), 1632—1634.

97



Thornhill, D. E., & Van Petten, C. (2012). Lexical versus conceptual anticipation during sentence
processing: Frontal positivity and N400 ERP components. /Infernational Journal of
Psychophysiology, 83(3), 382-392.

Traxler, M. J., & Foss, D. J. (2000). Effects of sentence constraint on priming in natural language
comprehension. Journal of Experimental Psychology: Learning, Memory, and Cognition, 26(5),
1266.

Van Berkum, J. J. (2009). The neuropragmatics of ’simple’ utterance comprehension: An ERP review. In
Semantics and pragmatics: From experiment to theory (pp. 276-316). Palgrave Macmillan.

van Berkum, J. J., Brown, C. M., Zwitserlood, P., Kooijman, V., & Hagoort, P. (2005). Anticipating
upcoming words in discourse: evidence from ERPs and reading times. Journal of Experimental
Psychology: Learning, Memory, and Cognition, 31(3), 443.

Van Herten, M., Kolk, H. H., & Chwilla, D. J. (2005). An ERP study of P600 effects elicited by semantic
anomalies. Cognitive brain research, 22(2), 241-255.

Van Petten, C. (1993). A comparison of lexical and sentence-level context effects in event-related
potentials. Language and Cognitive Processes, 8(4), 485-531.

Van Petten, C., Coulson, S., Rubin, S., Plante, E., & Parks, M. (1999). Time course of word identification
and semantic integration in spoken language. Journal of Experimental Psychology: Learning,
Memory, and Cognition, 25(2), 394.

Van Petten, C., & Kutas, M. (1990). Interactions between sentence context and word frequency in event-
related brainpotentials. Memory & Cognition, 18(4), 380-393.

Van Petten, C., & Kutas, M. (1991). Influences of semantic and syntactic context on open-and closed-
class words. Memory & Cognition, 19(1), 95-112.

Van Petten, C., & Luka, B. J. (2012). Prediction during language comprehension: Benefits, costs, and
ERP components. International Journal of Psychophysiology, 83(2), 176-190.

Warren, T., Dickey, M. W., & Lei, C. M. (2016). Structural prediction in aphasia: Evidence from either.
Journal of neurolinguistics, 39, 38-48.

Wicha, N. Y., Moreno, E. M., & Kutas, M. (2004). Anticipating words and their gender: An event-related
brain potential study of semantic integration, gender expectancy, and gender agreement in
Spanish sentence reading. Journal of cognitive neuroscience, 16(7), 1272-1288.

Wilson, M. P., & Garnsey, S. M. (2009). Making simple sentences hard: Verb bias effects in simple direct
object sentences. Journal of Memory and Language, 60(3), 368—392.

Wiotko, E. W., & Federmeier, K. D. (2012). So that’'s what you meant! Event-related potentials reveal
multiple aspects of context use during construction of message-level meaning. Neurolmage,
62(1), 356-366.

Wiotko, E. W., Federmeier, K. D., & Kutas, M. (2012). To predict or not to predict: age-related
differences in the use of sentential context. Psychology and aging, 27(4), 975.

Xiang, M., & Kuperberg, G. R. (2015). Reversing expectations during discourse comprehension.
Language, Cognition and Neuroscience, 30(6), 648—672.

98






Ss%pn

DNNNA DXTPNRNNN D27 OAIPNN DY, DININND DINVUYN TINN 27 IPNHNY XY MPT NAY TIDY NY2 NN
NTAYN .DPMX DPNNMNN DXTTHA NV OTY DX DN 12 IDIND ,DNYY DOINIRNDN PN DIANYHIN
YOINDAINPIOPY YN DY NUPON ,/NNTPIN TPNDOPNRY NN YH1IN MY P2 MNIN NTPHRNHD NPNOVN
2NN 9N AR DIVIY ,NTIAYN N1 MIAIN VIVNN N NITY 7 DTPIN NI TY! -1 ,NNV-TIIN N1 JONINDD

209N N HY TIYN Y20V OMIATNYM YN D¥IDNN NYIVO 912 DTN NMINIAY NYSN MIN T NTIAY]
DTPII PITY .(ND2 92 HYW M PN NNRXIYY DNNNL) I NTI 19IND) 912N DXAVPIND DY DNIVN DT DTN DY
N2 DMDN NN HY MIXDVPRD DTN OX P ,ID . TIND PIN J9IN A0PIND WD NN OX P wNINH
YR VAVHN NY TIN ON PN NVOIN NTNY TIND NAOPIND NNMNY NDNNT,OTPID NITY YNIND ,NOW GO
NPNN NNV PNYI 172NN OTPIN NITY 12YY NN DX VYR YN NN TWRD DIPHI ,YNIND 1NN
40NV NN DY DTN OV 2IWN LN (NIDTIVY MNYN NDMIN DY NIDNONR VIN TNKD) NPTIDY MDY MDD
MDY 11D DIMANNI DMYINI D721 YY) DINY DIWIN PA NNV NPNY 91D 1T G0 .7 N DTN NITYD
L,MANIVIDA MM NNDINN 1D DIINIAND DY) MNY NPINIVIDY NNRNN YD 912 G0N ,9012.(NTHIay PN
PNVIDAN P2 PINRD NN DY ,DTPIN PNITY YNIY NMVIA VIV NT GO TO2 .(NYVNN XY ,VHP YYIN NN
JNY NN DY ITIDYN MYYN P20 NOY NN NYA NYAPNNN

DYNIPHNIVPINY DOANTINN DNIDN NITO Yy DNNTHN ,DINNND IWIDYN NI 1N 1Y
INNNA D0 YNINY HTINN DY DMIPOYN DXVPIOND NN PNIY DNIVHY (event-related potentials, ERP)
Y NMA NTIVIININI NRVIND WX ,OTPIND NITYN TPONN DY INPPY MNP HAIOPION NITY MIXID PYUNIN
52191 519N DY ,(PIN NN DIIX»N DIRY DXVIVNI NMIYD) PIN NN DINMHN DM0IWNI- P600 N NOMOMP
NTIAY PNIDT PTAN DIPTIIN MIPX DY NAPN 7PXDNP IO DT VPIANY NIRID DX GONA .71MAN TIND NPND
TP PN MPIDM ORNNA DOPTI P2 MINWN OTPIN NITY Y835 1»VIN ¥ NTIYNN INNIN (reading span)

speeded cloze ) MM DVAYN NPYYN NYVLHNI NPONN NPXNN MPNN NN NANVM2 NN NVN IINNI
MPNNI VIYNPN NN IOVNN 1PN NP2 PXANY YITY PTIIN NIV DOLOVYHD NNV NoVN ,IMYD | (task
NI NNXIVA NYIVIN VAV 5 NIY TN NNINN NNDVNN DY NPONN NIPNN MPNNRY NINID NN .1PIWIND
DXNY OMIPNY TO1 MIMIN NINR MINXIN .INPA NN 7PIWN NDININ PO IPRY NINNN DY S0INDN WP
.DMMPN DDVITOVIND TMIVINNN NYOVIN PN NP HY TPSDVPND NKA 2 MNINI ,D72APNI DIAVPIND
L, NN DOVAVH NNDYN MYV NPINN NYINN MPNN NN ITHN YN YN DTN MPADN DX NNIN NT IINN2
,interactive activation and competition model) MINM MYDLPR MYPRIVINN DTN DY NANIN NPV 7Y
.(2012) Mirman -y Chen bw (IAC

NNYYN NOVNI VDY MYNNINI ,YSINND DTPIN PITY 1N MDX0IN IR MIPIN NN SWHYN 10NN
NN NS MO MYPON N NVIY .LAYND NPOYNN NPAN 79 N 9N 5y ERP nobSpn 7in nynmm ovavn
PINN NPNN DX NOPYN YN 10 TYS Y91 1/P 723 Y5 n/p2ony movsavn Nonn by ooanna ERP -0 »in)
NM2 P600 NTILIYONN YW N¥HNI NN 1MW MINKIND .DNIDNN Y112 NADNIDN N/PTN NIY NP2
AN TIND 19799 9207 HNDN DY, (PIN NN DIINMN DINY DIVIVN NMIYD) PIN NN DINMNN DOVIVWNI
1PN (PN NN DIXMN DINY DOVAYN NNIYY) PIN NN DXIXMIN DIVIVNII DPPNN NT VPN, TON NI
M0 DY N SV PN (NPNY NI GPNWNN) DINDN MDA TYNI I/PTN NV INPA PINN MINN TWND
LDTPIAN PITYN TONN NN DI¥9NDT 1NIINND NDOY D 12Y IR WY MNDOUPN N)I1H2 MOIMIN NIN MINIIN .19
,MOY TIDY 1O NN DXANYNN DMIINIDN DNNINNN DY 132NN IR MNTPN NON NMINHN 19952

DINN NN DY AN VDA DTV MNTPNI,TTIA TNN TONIN ION NPNY JHPYIN IR MYITH



000

TEL AVIV NU'O1Q"IN
UNIVERSITY 2'AN'TN

NN OYTID DD 190N N1

D9 XY :DWOWN 712V N ONIIN
TONOVDN

ININ NYAP DY NN
"79D10990% Pt

ARIa9A!
01 b

DY NNMNINA YSHI2 NDNN
TWR-TXDM 7R 091D

IAN-9N NVIDININ VNIDY WD
2021 pYy



	Abstract
	Contents
	1 Introduction
	1.1 Evidence of prediction during language processing
	1.2 Prediction failure costs and specific word prediction
	1.3 Pre-activation and pre-updating
	1.4 ERP correlates of activation and integration
	1.4.1 The N400
	1.4.2 The P600

	1.5 The current studies
	1.5.1 Predictive pre-updating and working memory capacity: Evidence from event-related potentials (Ness & Meltzer-Asscher, 2018b)
	1.5.2 Love thy neighbor: facilitation and competition between parallel predictions (Ness & Meltzer-Asscher, 2021a)
	1.5.3 From pre-activation to pre-updating: A threshold mechanism for commitment to strong predictions (Ness & Meltzer-Asscher, 2021b)


	2 Papers
	2.1 Predictive pre-updating and working memory capacity: Evidence from event-related potentials
	2.2 Love thy neighbor: facilitation and competition between parallel predictions
	2.3 From pre-activation to pre-updating: A threshold mechanism for commitment to strong predictions

	3 Discussion
	3.1 A model of lexical prediction
	3.2 Open questions and future directions
	3.2.1 Pre-updating and inhibition
	3.2.2 Individual differences in prediction processes
	3.2.3 Adaptation of the retrieval threshold
	3.2.4 Prediction processes in neurodiverse populations


	4 References for Introduction and Discussion
	תקציר

